PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical Pretreatment of Lignocellulosic Biomass for Methane Fermentation in Innovative Reactor with Cage Mixing System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Disintegration of lignocellulosic biomass for energy purposes has been extensively studied. The study aimed to investigate the influence of crushed and uncrushed lignocellulosic biomass on the biogas production in an innovative reactor. The substrate fed to the reactor was Sida hermaphrodita silage mixed with cow manure. The bioreactor had an innovative design of the mixing cage system. The mixing system of the bioreactor consisted of two cylindrical stirrers in the form of a cage. The cages simultaneously rotate around the axis of the bioreactor at against their own axes. The bioreactor is currently presented under the Record Biomap program (Horizon 2020). The bioreactor was operated at organic compounds loading of 2 kg/(m3∙d) and 3 kg/(m3∙d) and hydraulic retention time was 50 d and 33 d, respectively. The biogas production under the organic compounds loading of 2 kg VS/(m3∙d) was 680 L/kg VS from crushed lignocellulosic biomass and 570 L/kg VS from uncrushed lignocellulosic biomass. The biogas production under the organic compounds loading 3 kg VS/(m3∙d) was 730 L/kg VS from crushed lignocellulosic biomass and 630 L/kg VS from uncrushed lignocellulosic biomass. The crushing of substrate did not influence the methane content in the biogas. In all experiments, the biogas comprised about 54% of methane. The net energy efficiency was calculated as well.
Rocznik
Strony
219--224
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117, 10-720 Olsztyn, Poland
  • Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117, 10-720 Olsztyn, Poland
autor
  • Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117, 10-720 Olsztyn, Poland
autor
  • Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117, 10-720 Olsztyn, Poland
Bibliografia
  • 1. Allen S.A., Clark W., McCaffery J.M., Cai Z., Lanctot A., Slininger P.J. et al. 2010. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisae. Biotechnology for Biofuels, 3, 1–10.
  • 2. Bhatia S.K., Kim S.-H., Yoon J.-J., Yang Y.-H. 2017. Current status and strategies for second generation biofuel production using microbial systems. Energy Conversion and Management, 148, 1142–1156.
  • 3. Gallegos D., Wedwitschk H., Moeller L., Zehnsdorf A., Stinner W. 2017. Effects of particle size reduction and ensiling fermentation on biogas formation and silage quality of wheat straw. Bioresource Technology, 245, 216–224.
  • 4. Kratky L., Jirout T. 2010. Biomass Size Reduction Machines for Enhancing Biogas Production. Chemical Engineering & Technology, 34(3), 391–399.
  • 5. Li D., Liu S.C., Mi L., Li Z.D., Yuan Y.X., Yan Z.Y. Liu X.F. 2015. Effects of feedstock ratio and organic loading rate on the anaerobic mesophile co-digestion of rice straw and pig manure. Bioresource Technology, 187, 120–127.
  • 6. Mbaye S., Dieudé-Fauvel E., Baudez J.C. 2014. Comparative analysis of anaerobically digested wastes flow properties. Waste Management, 34(11), 2057–2062.
  • 7. Morken J., Gjetmundsen M., Fjørtoft K. 2018. Determination of kinetic constants from the co-digestion of dairy cow slurry and municipal food waste at increasing organic loading rates. Renewable Energy, 117, 46–51.
  • 8. Paudel S.R., Banjara S.P., Choi O.K., Park K.Y., Kim Y.M., Lee J.W. 2017. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresource Technology, 245, 1194–1205.
  • 9. Rodriguez C., Alaswad A., Benyounis K.Y., Olabi A.G. 2017. Pretreatment techniques used in biogas production from grass. Renewable and Sustainable Energy Reviews, 68, 1193–1204.
  • 10. Taherzadeh M.J., Karimi K. 2008. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences, 9(9), 1621–51.
  • 11. Tsapekos P., Kougias P.G., Treu L., Campanaro S., Angelidaki I. 2017. Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production. Applied Energy, 185, 126–135.
  • 12. Zieliński M., Dębowski M., Kisielewska M., Nowicka A., Rokicka M., Szwarc K. 2017. Comparison of ultrasonic and hydrothermal cavitation pretreatments of cattle manure mixed with straw wheat on fermentative biogas production. Waste and Biomass Valorization. DOI: 10.1007/s12649–017–9977-y.
  • 13. Zhou J., Yang J., You Q., Yong X., Xie X., Zhang L., Wei P., Jia H. 2017. Different organic loading rates on the biogas production during the anaerobic digestion of rice straw. A pilot study. Bioresource Technology, 244, 865–871.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90aadf07-199a-4922-bba7-54edda783610
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.