Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of experimental research on a pumping engine with the low-boiling medium HFE-7100. The research was conducted in a micro-ORC system with an output of about 2.5 kWe. Among other factors, the impact of working medium temperature and pump rotational speed on the operating parameters of the gear pump and pumping engine is analyzed. The research shows that increasing the rotational speed and HFE-7100 temperature resulted in an increase in the power consumed by the pump drive and an increase in the effective power of the pump. The increase in the effective power of the pump was greater than the electrical power consumption of the pump drive, resulting in an increase in the volumetric efficiency of the pump. It has been established that, at a constant pump rotational speed of 2000 rpm, increasing the average temperature of HFE-7100 by 27 K from approximately 304 K resulted in a 4% increase in the pump's volu-metric efficiency to 80%. It has been established that, for any value of pump rotational speed and working fluid tempera-ture, there exists an optimal effective power value for the pump at which the pumping engine achieves the maximum efficiency.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
125--140
Opis fizyczny
Bibliogr. 75 poz.
Twórcy
autor
- Institute of Fluid-Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, Gdańsk 80-231, Poland
Bibliografia
- [1] Hasan, A., Mugdadi, B., Al-Nimr, M.A., & Tashtoush, B. (2022). Direct and indirect utilization of thermal energy for cooling gen-eration: A comparative analysis. Energy, 238 (Part C), 122046. doi: 10.1016/j.energy.2021.122046
- [2] Kruk-Gotzman, S., Ziółkowski, P., Iliev, I., Negreanu, G-P., & Badur, J. (2023). Techno-economic evaluation of combined cycle gas turbine and adiabatic compressed air energy storage integra-tion concept. Energy, 266, 126345. doi: 10.1016/j.energy.2022. 126345
- [3] Montazerinejad, H., & Eicker, U. (2022). Recent development of heat and power generation using renewable fuels: A comprehen-sive review. Renewable and Sustainable Energy Reviews, 165, 112578. doi: 10.1016/j.rser.2022.112578
- [4] Wei, J., Hua, Q., Yuan, L., Li, G., Wang, J., & Wang, J. (2023). A review of the research status of scroll expander. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 237(1), 176–197. doi: 10.1177/ 09576509221109245
- [5] Minea, V. (2014). Power generation with ORC machines using low-grade waste heat or renewable energy. Applied Thermal En-gineering, 69(1–2), 143-154. doi: 10.1016/j.applthermaleng. 2014.04.054
- [6] Di Battista, D., & Cipollone, R. (2023). Waste Energy Recovery and Valorization in Internal Combustion Engines for Transporta-tion. Energies, 16, 3503. doi: 10.3390/en16083503
- [7] Kaczmarczyk, T.Z. (2021). Experimental research of a small bi-omass organic Rankine cycle plant with multiple scroll expanders intended for domestic use. Energy Conversion and Management, 244, 114437. doi: 10.1016/j.enconman.2021.114437
- [8] Jain, S.V., Patel, R.N. (2014). Investigations on pump running in turbine mode: A review of the state-of-the-art. Renewable and Sustainable Energy Reviews, 30, 841868. doi: 10.1016/j.rser. 2013.11.030
- [9] Kottapallia, A. & Konijeti, R. (2022). Numerical and experi-mental investigation of nonlubricated air scroll expander derived from a refrigerant scroll compressor. Frontiers in Heat and Mass Transfer, 19(1), 1–11. doi: 10.5098/hmt.19.11
- [10] Zhang, X., Wang, X., Cai, J., Wang, R., Bian, X., He Z., Tian, H., & Shu, G. (2023). Operation strategy of a multi-mode Organic Rankine cycle system for waste heat recovery from engine cool-ing water. Energy, 263 (Part E), 125934. doi: 10.1016/j.energy. 2022.125934
- [11] Gunawan, G., Permana, D.I., & Soetikno, P. (2023). Design and numerical simulation of radial inflow turbine of the regenerative Brayton cycle using supercritical carbon dioxide. Results in En-gineering, 17, 100931. doi: 10.1016/j.rineng.2023.100931
- [12] Li, X., Lv, C., Yang, S., Li J., Deng, B., & Qing, Li Q. (2019). Preliminary design and performance analysis of a radial inflow turbine for a large-scale helium cryogenic system. Energy, 167, 106–116. doi: 10.1016/j.energy.2018.10.179
- [13] Liaw, K.L., Kurnia, J.C., Lai, W.K., Ong, K.Ch., Zar, M.A.B.M.A, Muhammad, M.F.B., & Firmansyah. (2023). Opti-mization of a novel impulse gas turbine nozzle and blades design utilizing Taguchi method for micro-scale power generation. En-ergy, 282, 129018. doi: 10.1016/j.energy.2023.129018
- [14] Zhar, R., Allouhi, A., Ghodbane, M., Jamil, A., & Khadija, L.K. (2021). Parametric analysis and multi-objective optimization of a combined Organic Rankine Cycle and Vapor Compression Cy-cle. Sustainable Energy Technologies and Assessments, 47, 101401. doi: 10.1016/j.seta.2021.101401
- [15] Kolasiński, & P., Daniarta, S. (2021). Sizing the thermal energy storage (TES) device for organic Rankine cycle (ORC) power systems. MATEC Web of Conferences, 345, 00018. doi: 10.1051/ matecconf/202134500018
- [16] Zhang, H-H., Zhang, Y-F., Feng, Y-Q., Chang, J-Ch., Chang, Ch-W., Xi, H., Gong, L., Hung, T-Ch., & Li, M-J. (2023). The para-metric analysis on the system behaviors with scroll expanders employed in the ORC system: An experimental comparison. En-ergy, 268, 126713. doi: 10.1016/j.energy.2023.126713
- [17] Milewski, J., & Krasucki, J. ( 2018). Comparison of ORC and Kalina cycles for waste heat recovery in the steel industry. Jour-nal of Power Technologies, 97(4), 302–307.
- [18] Alperen B., C., & Oğuz A. (2024). Numerical analysis-based per-formance assessment of the small-scale organic Rankine cycle turbine design for residential applications. Thermal Science and Engineering Progress, 51, 102626. doi: 10.1016/j.tsep.2024. 102626
- [19] Ziółkowski, P., Hyrzyński, R., Lemański, M., Kraszewski, B., Bykuć, S., Głuch, S., Sowiżdżał, A., Pająk, L., Wachowicz-Pyzik, A., & Badur, J. (2021). Different design aspects of an Or-ganic Rankine Cycle turbine for electricity production using a ge-othermal binary power plant. Energy Conversion and Manage-ment, 246, 114672. doi: 10.1016/j.enconman.2021.114672
- [20] Wang, R., Jiang, L., Ma, Z., Gonzalez-Diaz, A., Wang, Y., & Roskilly, A.P. (2019). Comparative Analysis of Small-Scale Or-ganic Rankine Cycle Systems for Solar Energy Utilisation. Ener-gies, 12(5), 829. doi: 10.3390/en12050829
- [21] Kaczmarczyk, T.Z., & Żywica, G. (2022) Experimental study of a 1 kW high-speed ORC microturbogenerator under partial load. Energy Conversion and Management, 272, 116381. doi: 10.1016/ j.enconman.2022.116381
- [22] Peng, N., Wang, E., & Wang, W. (2023). Design and analysis of a 1.5 kW single-stage partial-admission impulse turbine for low-grade energy utilization. Energy, 268, 126631. doi: 10.1016/j. energy.2023.126631
- [23] Witanowski, Ł., Klonowicz, P., Lampart, P., Klimaszewski, P., Suchocki, T., Jędrzejewski, Ł., Zaniewski, & D., Ziółkowski, P. (2023). Impact of rotor geometry optimization on the off-design ORC turbine performance. Energy, 265, 126312. doi: 10.1016/j. energy.2022.126312
- [24] Ekwonu, M.C., Kim, M., Chen, B., Nasir, M.T., & Kim, K.C. (2023). Dynamic Simulation of Partial Load Operation of an Or-ganic Rankine Cycle with Two Parallel Expanders. Energies, 16(1), 519. doi: 10.3390/en16010519
- [25] Kaczmarczyk, T.Z. (2022). Thermal flow and electrical power re-search of ORC micro-cogeneration systems and their compo-nents. Summary of Professional Accomplishments – Appendix No. 3 to the habilitation proceedings. Gdańsk, Poland. https:// www.imp.gda.pl/en/bip/postepowania-habilitacyjne/ [accessed: 3 Oct. 2023].
- [26] Casari, N., Fadiga, E., Pinelli, M., Randi, S., & Suman, A. (2019). Pressure Pulsation and Cavitation Phenomena in a Micro-ORC System. Energies, 12(11), 2186. doi: 10.3390/en12112186
- [27] Witanowski, Ł., Ziółkowski, P., Klonowicz, P., & Lampart, P. (2023). A hybrid approach to optimization of radial inflow tur-bine with principal component analysis. Energy, 272, 127064. doi: 10.1016/j.energy.2023.127064
- [28] Fakeye, A.B., & Oyedepo, S.O. (2019). Designing Optimized Or-ganic Rankine Cycles Systems for Waste Heat-to-Power Conver-sion of Gas Turbine Flue Gases. International Conference on En-gineering for Sustainable World. Journal of Physics: Conference Series, 1378, 032097. IOP Publishing. doi: 10.1088/1742-6596/ 1378/3/032097
- [29] Xi, H., Zhang, H., He, Y-L., & Huang, Z. (2019). Sensitivity anal-ysis of operation parameters on the system performance of or-ganic Rankine cycle system using orthogonal experiment. En-ergy, 172, 435–442. doi: 10.1016/j.energy.2019.01.072
- [30] Fatigati, F., Vittorini, D., Wang, Y., Song, J., Markides ,C.N., & Cipollone, R. (2020). Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery. Energies, 13(21), 5846. doi: 10.3390/en13215846
- [31] Ziviani, D., Gusev, S., Lecompte, S., Groll, E.A., Braun, J.E., Horton, W.T., Broek, M., & De Paepe, M. (2017). Optimizing the performance of small-scale organic Rankine cycle that utilizes a single-screw expander. Applied Energy, 189, 416–432. doi: 10.1016/j.apenergy.2016.12.070
- [32] Meng, F., Zhang, H., Yang, F., Hou, X., Lei, B., Zhang, L., Wu, Y., Wang, J., & Shi, Z. (2017). Study of efficiency of a multistage centrifugal pump used in engine waste heat recovery application. Applied Thermal Engineering, 110, 779–786. doi: 10.1016/ j.ap-plthermaleng.2016.08.226
- [33] Quoilin, S., Broek M., Declaye, S., Dewallef, P., & Lemort, V. (2013). Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renewable and Sustainable Energy Reviews, 22, 168–186. doi: 10.1016/j.rser.2013.01.028
- [34] Moradi, R., Habib, E., Bocci, E., & Cioccolanti, L. (2021). Com-ponent-Oriented Modeling of a Micro-Scale Organic Rankine Cycle System for Waste Heat Recovery Applications. Applied Sciences. 11(5), 1984. doi: 10.3390/app11051984
- [35] Kaczmarczyk, T.Z., & Żywica, G. (2022). Experimental research of a micropower volumetric expander for domestic applications at constant electrical load. Sustainable Energy Technologies and Assessments, 49, 101755. doi: 10.1016/j.seta.2021.101755
- [36] Huo, E., Xin, L., & Wang, S. (2022). Thermal stability and py-rolysis mechanism of working fluids for organic Rankine cycle: A review. International Journal of Energy Research, 46(14), 19341–19356. doi: 10.1002/er.8518
- [37] Hao, X., Zhou, X., Liu, X., & Sang, X. (2016). Flow characteris-tics of external gear pumps considering trapped volume. Ad-vances in Mechanical Engineering, 8(10). doi: 10.1177/ 1687814016674100
- [38] Kaczmarczyk, T.Z., Żywica, G., & Ihnatowicz, E. (2016). Exper-imental investigation on a rotodynamic pump operating in the co-generation system with a low-boiling working medium. Transac-tions of the Institute of Fluid-Flow Machinery, 134, 63–87.
- [39] Njock, J.P., Ngangué, M.N., Sosso, O.T., & Nzengwa, R. (2023). Highlighting the effect of the lower operating limit of the conden-ser on ORC working fluids selection. Results in Engineering, 19, 101369. doi: 10.1016/j.rineng.2023.101369
- [40] Ping, X., Yang, F., Zhang, H., Zhang, J., Xing, Ch., Yan, Y., Yang, A., & Wang, Y. (2023). Information theory-based dynamic feature capture and global multi-objective optimization approach for organic Rankine cycle (ORC) considering road environment. Applied Energy, 348, 121569. doi: 10.1016/j.apenergy.2023. 121569
- [41] Dhote, N., Khond, M., & Sankpal, R. (2023). Wear material de-termination and parameters optimization of an external gear pump by Taguchi technique. Materials Today: Proceedings, 72 (Part 3), 679–686. doi: 10.1016/j.matpr.2022.08.374
- [42] Hernandez-Carrillo, I., Wood, Ch.J., & Liu, H. (2017). Advanced materials for the impeller in an ORC radial microturbine. Energy Procedia, 129, 1047–1054. doi: 10.1016/j.egypro.2017.09.241
- [43] Li, W., & Yu, Z. (2021). Cavitating flows of organic fluid with thermodynamic effect in a diaphragm pump for organic Rankine cycle systems. Energy, 237, 121495. doi: 10.1016/j.energy.2021. 121495
- [44] Li, W., & Yu, Z. (2021). Cavitation models with thermodynamic effect for organic fluid cavitating flows in organic Rankine cycle systems. Thermal Science and Engineering Progress, 26, 101079. doi: 10.1016/j.tsep.2021.101079
- [45] Li, W., Mckeown A., & Yu, Z. (2020). Correction of cavitation with thermodynamic effect for a diaphragm pump in organic Ran-kine cycle systems. Energy Reports, 6, 2956–2972. doi: 10.1016/ j.egyr.2020.10.013
- [46] Borsukiewicz-Gozdur A. (2013). Pumping work in the organic Rankine cycle. Applied Thermal Engineering, 51 (1–2), 781–786. doi: 10.1016/j.applthermaleng.2012.10.033
- [47] Lu, Y., Guo, Z., Zheng, Z., Wang, W., Wang, H., Zhou, F., & Wang, X. (2023). Underwater propeller turbine blade redesign based on developed inverse design method for energy perfor-mance improvement and cavitation suppression. Ocean Engi-neering, 277, 114315. doi: 10.1016/j.oceaneng.2023.114315
- [48] Bianchi, G., Fatigati, F., Murgia, S., & Cipollone, R. (2017). De-sign and analysis of a sliding vane pump for waste heat to power conversion systems using organic fluids. Applied Thermal Engi-neering, 124, 1038–1048. doi: 10.1016/j.applthermaleng.2017. 06.083
- [49] Kaczmarczyk, T.Z., Ihnatowicz, E., Żywica, G., & Kaniecki, M. (2019). Experimental study of the prototype of a Roto-Jet pump for the domestic ORC power plant. Archives of Thermodynamics, 40(3), 83–108. doi: 10.24425/ather.2019.129995
- [50] Yang, Y., Zhang, H., Xu, Y., Yang, F., Wu, Y., & Lei, B. (2018). Matching and operating characteristics of working fluid pumps with organic Rankine cycle system. Applied Thermal Engineer-ing, 142, 622–631. doi: 10.1016/j.applthermaleng.2018.07.039
- [51] Yang, Y., Zhang, H., Tian, G., Yonghong, X., Chongyao, W., & Jianbing, G. (2019). Performance Analysis of a Multistage Cen-trifugal Pump Used in an Organic Rankine Cycle (ORC) System under Various Condensation Conditions. Journal of Thermal Sci-ence, 28, 621–634. doi: 10.1007/s11630-019-1069-9
- [52] Zeleny, Z., Vodicka, V., Novotny, V., & Mascuch, J. (2017). Gear pump for low power output ORC – an efficiency analysis. Energy Procedia, 129, 1002–1009. doi: 10.1016/j.egypro.2017. 09.227
- [53] D'Amico, F., Pallis, P., Leontaritis, A.D, Karellas, S., Kakalis, N.M., Rech, S., & Lazzaretto, A. (2018). Semi-empirical model of a multi-diaphragm pump in an Organic Rankine Cycle (ORC) experimental unit. Energy, 143, 1056–1071. doi: 10.1016/j.en-ergy.2017.10.127
- [54] Carraro, G., Pallis, P., Leontaritis, A.D., Karellas, S., Vourliotis, P., Rech, S., & Lazzaretto, A. (2017). Experimental performance evaluation of a multi-diaphragm pump of a micro-ORC system. Energy Procedia, 129:1018-1025. doi: 10.1016/j.egypro.2017. 09.232.
- [55] Zardin, B., Natali, E., & Borghi, M. (2019). Evaluation of the Hy-dro-Mechanical Efficiency of External Gear Pumps. Energies, 12(13), 2468. doi: 10.3390/en12132468
- [56] Misiewicz W. (2007). The optimization of the pump sets with the variable-speed drives. Maszyny Elektryczne Zeszyty Proble-mowe, 78, 43–52.
- [57] Yang, X., Xu, J., Miao, Z., Zou, J., & Yu, Ch. (2015). Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques. Energy, 90(1), 864–878. doi: 10.1016/j.en-ergy.2015.07.121
- [58] Landelle, A., Tauveron, N., Revellin, R., Haberschill, P., Colas-son, S., & Roussel, V. (2017). Performance investigation of re-ciprocating pump running with organic fluid for organic Rankine cycle. Applied Thermal Engineering, 113, 962–969. doi: 10.1016/j.applthermaleng.2016.11.096
- [59] Feng, Y-Q., Hung, T-Ch., Wu, S-L., Lin, Ch-H., Li, B-X., Huang, K-Ch., & Qin, J. (2017). Operation characteristic of a R123-based organic Rankine cycle depending on working fluid mass flow rates and heat source temperatures. Energy Conversion and Man-agement, 131, 55–68. doi: 10.1016/j.enconman.2016.11.004
- [60] Yang, Y., Zhang, H., Xu, Y., Zhao, R., Hou, X., & Liu, Y. (2018). Experimental study and performance analysis of a hydraulic dia-phragm metering pump used in organic Rankine cycle system. Applied Thermal Engineering, 132, 605–612. doi: 10.1016/j.ap-plthermaleng.2018.01.001
- [61] Gao, P., Wang, Z.X., Wang, L.W., & Lu, H.T. (2018). Technical feasibility of a gravity-type pumpless ORC system with one evap-orator and two condensers. Applied Thermal Engineering, 145, 569–575. doi: 10.1016/j.applthermaleng.2018.09.049
- [62] Komaki, K., Kanemoto, T., & Sagara, K. (2012). Performances and Rotating Flows of Rotary Jet Pump. Open Journal of Fluid Dynamics, 2(4A), 375–379. doi: 10.4236/ojfd.2012.24A048
- [63] Osborn, S. (1996). The Roto-Jet pump: 25 years new. World Pumps, 363, 32–36. doi: 10.1016/S0262-1762(99)81000-1
- [64] Jiang, L., Lu, H.T., Wang, L.W., Gao, P., Zhu, F.Q., Wang, R.Z., & Roskilly, A.P. (2017). Investigation on a small-scale pumpless Organic Rankine Cycle (ORC) system driven by the low temper-ature heat source. Applied Energy, 195, 478–486. doi: 10.1016/ j.apenergy.2017.03.082
- [65] Gkimisis, L., Arapkoules, N., Vasileiou, G., Soldatos, A., & Spitas, V. (2020). Modelling and numerical simulation of a novel Pumpless Rankine Cycle (PRC). Applied Thermal Engineering, 178, 115523. doi: 10.1016/j.applthermaleng.2020.115523
- [66] Richardson, E.S. (2016). Thermodynamic performance of new thermofluidic feed pumps for Organic Rankine Cycle applica-tions. Applied Energy, 161, 75–84. doi: 10.1016/j.apenergy.2015. 10.004
- [67] Semkło, Ł., & Gierz, Ł. (2022). Numerical and experimental analysis of a centrifugal pump with different rotor geometries. Applied Computer Science, 18(4), 82–95. doi: 10.35784/acs-2022-30
- [68] Datla, B.V., & Brasz J.J. (2012). Organic Rankine Cycle System Analysis for Low GWP Working Fluids. International Refriger-ation and Air Conditioning Conference at Purdue, 16–19 July, 2012
- [69] Kaczmarczyk, T.Z., & Ihnatowicz, E. (2016). The experimental investigation of scroll expanders operating in the ORC system with HFE7100 as a working medium. Applied Mechanics and Materials, 831, 245–255
- [70] Kaczmarczyk, T.Z., Żywica, G., & Ihnatowicz, E. (2017). The impact of changes in the geometry of a radial microturbine stage on the efficiency of the micro CHP plant based on ORC. Energy, 137, 530–543. doi: 10.1016/j.energy.2017.05.166
- [71] Mathias, J.J., Johnston, J.J., Cao, J.J., Priedeman, D.D., & Chris-tensen, R.N. (2009). Experimental testing of gerotor and scroll expanders used in, and energetic and exergetic modeling of an organic Rankine cycle. Journal of Energy Resources Technology. Trans. ASME, 131, 21–24. doi: 10.1115/1.3066345
- [72] Kaczmarczyk, T.Z., Żywica, G., & Ihnatowicz, E. (2017). Meas-urements and vibration analysis of a five-stage axial-flow micro-turbine operating in an ORC cycle. Diagnostyka, 18(2), 51–58.
- [73] Rausch, M.H., Kretschmer, L., Will, S., Leipertz, A., & Fröba, A.P. (2015). Density, Surface Tension, and Kinematic Viscosity of Hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500. Journal of Chemical Engineering, 60, 3759–3765. doi: 10.1021/acs.jced.5b00691
- [74] Bell, I.H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. In-dustrial & Engineering Chemistry Research, 53(6), 2498–2508. doi: 10.1021/ie4033999
- [75] Rządkowski, R., Żywica, G., Kaczmarczyk, T.Z., Koprowski, A., Dominiczak, K., Szczepanik, R., & Kowalski, M. (2020). Design and investigation of a partial admission radial 2.5-kW organic Rankine cycle micro-turbine. International Journal of Energy Research, 44(14), 11029-11043. doi: 10.1002/er.5670
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90a86809-ef22-44dd-850a-3e6581e5facf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.