PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nitrogen Transportation and Transformation Under Different Soil Water and Salinity Conditions

Identyfikatory
Warianty tytułu
PL
Transport i transformacja azotu w różnych warunkach nawodnienia i zasolenia gleb
Języki publikacji
EN
Abstrakty
EN
Soil nitrogen transportation and transformation are important processes for crop growth and environmental protection, and they are influenced by various environmental factors and human interventions. This study aims to determine the effects of irrigation and soil salinity levels on nitrogen transportation and transformation using two types of experiments: column and incubation. The HYDRUS-1D model and an empirical model were used to simulate the nitrogen transportation and transformation processes. HYDRUS-1D performed well in the simulation of nitrogen transportation and transformation under irrigated conditions (R2 as high as 0.944 and 0.763 for ammonium and nitrate-nitrogen simulations, respectively). In addition, the empirical model was able to attain accurate estimations for ammonium (R2 = 0.512-0.977) and nitrate-nitrogen (R2 = 0.410-0.679) without irrigation. The modelling results indicated that saline soil reduced the rate of urea hydrolysis to ammonium, promoted the longitudinal dispersity of nitrogen and enhanced the adsorption of ammonium-nitrogen. Furthermore, the effects of soil salinity on the nitrification rate were not obviously comparable to the effects of the amount of irrigation water. Without irrigation, the hydrolysis rate of urea to ammonium decreased exponentially with the soil salinity (R2 = 0.787), although the nitrification coefficient varied with salinity. However, the denitrification coefficient increased linearly with salinity (R2 = 0.499).
Rocznik
Strony
677--693
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072 China
  • State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072 China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072 China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072 China
Bibliografia
  • [1] Flowers T, Yeo A. Breeding for salinity resistance in crop plants: where next? Functional Plant Biology. 1995;22(6):875-884. DOI: 10.1071/PP9950875.
  • [2] Dai X, Huo Z, Wang H. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crop Res. 2011;121(3):441-449. DOI: 10.1016/j.fcr.2011.01.016.
  • [3] Pereira L, Goncalves J, Dong B, Mao Z, Fang S. Assessing basin irrigation and scheduling strategies for saving irrigation water and controlling salinity in the upper Yellow River Basin, China. Agr Water Manage. 2007;93(3):109-122. DOI: 10.1016/j.agwat.2007.07.004.
  • [4] Li J, Pu L, Han M, Zhu M, Zhang R, Xiang Y. Soil salinization research in China: Advances and prospects. J Geograph Sci. 2014;24(5):943-960. DOI: 10.1007/s11442-014-1130-2.
  • [5] Meng CH, Yang JZ. Experimental research on the radical selection of autumn irrigation norm in Hetao Irrigation District, China. Rural Water Res Hydropower. 2002;5:23-25. DOI: 10.3969/j.issn.1007-2284.2002.05.009.
  • [6] Feng Z, Wang X, Feng Z. Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China. Agr Water Manage. 2005;71(2):131-143. DOI: 10.1016/j.agwat.2004.07.001.
  • [7] Zhu Z, Chen D. Nitrogen fertilizer use in China - contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosys. 2002;63(2-3):117-127. DOI: 10.1023/A:1021107026067.
  • [8] Zhang W, Tian Z, Zhang N, Li X. Nitrate pollution of groundwater in northern China. Agricult Ecosyst Environ. 1996;59(3):223-231. DOI: 10.1016/0167-8809(96)01052-3.
  • [9] Zhang S, Gao P, Tong Y, Norse D, Lu Y, Powlson D. Overcoming nitrogen fertilizer over-use through technical and advisory approaches: A case study from Shaanxi Province, northwest China. Agricult Ecosyst Environ. 2015. DOI: 10.1016/j.agee.2015.03.002.
  • [10] Al-Busaidi KT, Buerkert A, Joergensen RG. Carbon and nitrogen mineralization at different salinity levels in Omani low organic matter soils. J Arid Environ. 2014;100:106-110. DOI: 10.1016/j.jaridenv.2013.10.013.
  • [11] Baligar V, Fageria N. Nutrient Use Efficiency in Plants: An Overview, in Nutrient Use Efficiency: from Basics to Advances. India: Springer; 2015. 1-14. DOI 10.1007/978-81-322-2169-2_1.
  • [12] Dzurella K, Pettygrove G, Fryjoff-Hung A, Hollander A, Harter T. Potential to assess nitrate leaching vulnerability of irrigated cropland. J Soil Water Conserv. 2015;70(1):63-72. DOI: 10.2489/jswc.70.1.63.
  • [13] Valkama E, Lemola R, Känkänen H, Turtola E. Meta-analysis of the effects of undersown catch crops on nitrogen leaching loss and grain yields in the Nordic countries. Agricult Ecosyst Environ. 2015;203:93-101. DOI: 10.1016/j.agee.2015.01.023.
  • [14] Gilliam J, Logan TJ, Broadbent F. Fertilizer use in relation to the environment. Fertilizer technology and use. 1985 (fertilizertechn): 561-588. DOI:10.2136/1985.
  • [15] Silva R, Jorgensen E, Holub S, Gonsoulin M. Relationships between culturable soil microbial populations and gross nitrogen transformation processes in a clay loam soil across ecosystems. Nutr Cycl Agroecosys. 2005;71(3):259-270. DOI: 10.1007/s10705-004-6378-y.
  • [16] Purnomo E, Black A, Conyers M. The distribution of net nitrogen mineralisation within surface soil. 2. Factors influencing the distribution of net N mineralisation. Soil Res. 2000;38(3):643-652. DOI: 10.1071/SR99059.
  • [17] Kern J, Kreibich H, Darwich A, McClain M. Nitrogen dynamics on the Amazon flood plain in relation to the flood pulse of the Solimões River. The ecohydrology of South American rivers and wetlands. 2002:35-47. DOI: 10.5876/9781607323693.c022.
  • [18] Borken W, Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biol. 2009;15(4):808-824. DOI: 10.1111/j.1365-2486.2008.01681.x.
  • [19] Rietz DN, Haynes RJ. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem. 2003;35(6):845-854. DOI: 10.1016/S0038-0717(03)00125-1.
  • [20] Pathak H, Rao D. Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol Biochem. 1998;30(6):695-702. DOI: 10.1016/S0038-0717(97)00208-3.
  • [21] Khoi CM, Guong VT, Merckx R. Predicting the release of mineral nitrogen from hypersaline pond sediments used for brine shrimp Artemia franciscana production in the Mekong Delta. Aquaculture. 2006;257(1):221-231. DOI: 10.1016/j.aquaculture.2006.02.075.
  • [22] Simunek J, Huang K, Van Genuchten MT. The HYDRUS-ET Software Package for Simulating the One-Dimentional Movement of Water, Heat and Multiple Solutes in Variably-Saturated Media, Version 1.1. 1997: Bratislava: Inst. Hydrology Slovak Acad. Sci. https://www.pc-progress.com/en/Default.aspx?Downloads.
  • [23] Gonçalves MC, Šimůnek J, Ramos TB, Martins JC, Neves MJ, Pires FP. Multicomponent solute transport in soil lysimeters irrigated with waters of different quality. Water Resour Res. 2006;42:W08401. DOI: 10.1029/2005WR004802.
  • [24] Forkutsa I, Sommer R, Shirokova Y, Lamers J, Kienzler K, Tischbein B, et al. Modeling irrigated cotton with shallow groundwater in the Aral Sea Basin of Uzbekistan: I. Water dynamics. Irrigation Sci. 2009;27(4):331-346. DOI: 10.1007/s00271-009-0148-1.
  • [25] Ngoc MN, Dultz S, Kasbohm J. Simulation of retention and transport of copper, lead and zinc in a paddy soil of the Red River Delta, Vietnam. Agricult Ecosyst Environ. 2009;129(1):8-16. DOI: 10.1016/j.agee.2008.06.008.
  • [26] Hachicha M, Mansour M, Rejeb S, Mougou R, Askri H, Abdelgawad J. Applied Research for the Utilization of Brackish/Saline Water in Center of Tunisia: water use. salinity evolution and crop response. Proceedings of International Salinity Forum. 2005. Riverside. http://www.worldcat.org/title/international-salinity-forum-managing-saline-soils-and-water-science-technology-and-social-issues-april-25-27-2005-salinity-forum-april-28-2005-farm-tour-riverside-convention-center-riverside-california/oclc/224317463.
  • [27] Zeng W, Xu C, Wu J, Huang J, Ma T. Effect of salinity on soil respiration and nitrogen dynamics. Ecol Chem Eng S. 2013;20(3):519-530. DOI: 10.2478/eces-2013-0039.
  • [28] Šimůnek J, Van Genuchten MT, Sejna M. The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, version 3.0, HYDRUS software series 1. Department of Environmental Sciences, University of California Riverside, Riverside, California. 2005: 270. https://www.pc-progress.com/en/Default.aspx?Downloads.
  • [29] Doherty J, Brebber L, Whyte P. PEST: Model-independent parameter estimation. Corinda, Australia: Watermark Computing; 1994; 122. http://www.pesthomepage.org/Downloads.php.
  • [30] Selim H, Iskandar I. Modeling nitrogen transport and transformations in soils: 1. Theoretical considerations. Soil Sci. 1981;131(4):233-241. DOI: 10.1097/00010694-198104000-00007.
  • [31] Li Y, Šimůnek J, Zhang Z, Jing L, Ni L. Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D. Agr Water Manage. 2015;148:213-222. DOI: 10.1016/j.agwat.2014.10.010.
  • [32] Tan X, Shao D, Gu W, Liu H. Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D. Agr Water Manage. 2015;150:67-80. DOI: 10.1016/j.agwat.2014.12.005.
  • [33] Mailhol J, Ruelle P, Nemeth I. Impact of fertilisation practices on nitrogen leaching under irrigation. Irrigation Sci. 2001;20(3):139-147. DOI: 10.1007/s002710100038.
  • [34] Patrick WH, Mahapatra I. Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils. Adv Agron. 1968;20:323-359. DOI: 10.1016/S0065-2113(08)60860-3.
  • [35] Hale S, Alling V, Martinsen V, Mulder J, Breedveld G, Cornelissen G. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere. 2013;91(11):1612-1619. DOI: 10.1016/j.chemosphere.2012.12.057.
  • [36] Noe GB, Krauss KW, Lockaby BG, Conner WH, Hupp CR. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands. Biogeochemistry. 2013;114(1-3):225-244. DOI: 10.1007/s10533-012-9805-1.
  • [37] Gao H, Bai J, He X, Zhao Q, Lu Q, Wang J. High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh. PloS ONE. 2014;9(4):e95011. DOI: 10.1371/journal.pone.0095011.
  • [38] Rysgaard S, Thastum P, Dalsgaard T, Christensen P B, Sloth N P. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries. 1999;22(1):21-30. DOI: 10.2307/1352923.
  • [39] Tripathi S, Kumari S, Chakraborty A, Gupta A, Chakrabarti K, Bandyapadhyay BK. Microbial biomass and its activities in salt-affected coastal soils. Biol Fert Soils. 2006;42(3):273-277. DOI: 10.1007/s00374-005-0037-6.
  • [40] Wong VN, Dalal RC, Greene RS. Salinity and sodicity effects on respiration and microbial biomass of soil. Biol Fert Soils. 2008;44(7):943-953. DOI: 10.1007/s00374-008-0279-1.
  • [41] Chen R, Twilley RR. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries. 1999;22(4):955-970. DOI: 10.2307/1353075.
  • [42] Nkrumah M, Griffith SM, Ahmad N. Lysimeter and field studies on 15N in a tropical soil-transformation of (NH2)2CO-15N in a tropical loam in lysimeter and field plots. Plant Soil. 1989;114:13-18. DOI: 10.1007/BF02203075.
  • [43] Hall NS, Paerl HW, Peierls BL, Whipple AC, Rossignol KL. Effects of climatic variability on phytoplankton community structure and bloom development in the eutrophic, microtidal, New River Estuary, North Carolina, USA. Estuarine, Coastal Shelf Sci. 2013;117:70-82. DOI: 10.1016/j.ecss.2012.10.004.
  • [44] Yoshie S, Ogawa T, Makino H, Hirosawa H, Tsuneda S, Hirata A. Characteristics of bacteria showing high denitrification activity in saline wastewater. Lett Appl Microbiol. 2006;42(3):277-283. DOI: 10.1111/j.1472-765X.2005.01839.x.
  • [45] Laura R. Salinity and nitrogen mineralization in soil. Soil Biol Biochem. 1977;9(5):333-336. DOI: 10.1016/0038-0717(77)90005-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-909d0cc4-e9e9-42e2-9835-5fd51c47f13f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.