PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of friction anisotropy of deepdrawing sheet in ABAQUS/EXPLICIT

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the experimental and numerical results of rectangular cup drawing of steel sheets. The aim of the experimental study was to analyze material behavior under deformation. The received results were further used to verify the results from numerical simulation by taking friction and material anisotropy into consideration. A 3D parametric finite element (FE) model was built using the commercial FE-package ABAQUS/Standard. ABAQUS allows analyzing physical models of real processes putting special emphasis on geometrical non-linearities caused by large deformations, material non-linearities and complex friction conditions. Frictional properties of the deep drawing quality steel sheet were determined by using the pin-on-disc tribometer. It shows that the friction coefficient value depends on the measured angle from the rolling direction and corresponds to the surface topography. A quadratic Hill anisotropic yield criterion was compared with Huber-Mises yield criterion having isotropic hardening. Plastic anisotropy is the result of the distortion of the yield surface shape due to the material microstructural state. The sensitivity of constitutive laws to the initial data characterizing material behavior is also presented. It is found that plastic anisotropy of the matrix in ductile sheet metal has influence on deformation behavior of the material. If the material and friction anisotropy are taken into account in the finite element analysis, this approach undoubtedly gives the most approximate numerical results to real processes. This paper is the first part of the study of numerical investigation using ABAQUS and mainly deals with the most influencing parameters in a forming process to simulate the sheet metal forming of rectangular cup.
Rocznik
Strony
47--52
Opis fizyczny
Bibliogr. 23 poz., il., rys., tab., wykr.
Twórcy
  • Rzeszow University of Technology, Department of Materials Forming and Processing, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Rzeszow University of Technology, Department of Materials Forming and Processing, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • [1] A. Hrivňák, L. Sobotová, The influence of the deformational ageing and the conditions of stress on the properties of the deep-drawing steel sheet, J. Mat. Proc. Technol., Vol. 34, no. 1-4 (1992) 425-430.
  • [2] L. Sobotová, E. Spišák, Analysis of influence of deep drawing process on the surface quality of material of pressings, Acta Mechanica Slovaca, Vol. 9 (2005) 165-170.
  • [3] E. Daxin, M. Takaji, L. Zhiguo, Stress analysis of rectangular cup drawing, J. Mat. Proc. Technol., Vol. 205, no. 1-3 (2005) 469-475.
  • [4] E. Daxin, P. Yuping, M. Takaji, Analysis of flange corner deformation in the process of fine copper cup drawing sheet rectangular, J. Plasticity Eng., Vol. 11 (2004) 39–42.
  • [5] T. Wen, E. Daxin, (2004) Application of FEM on the study of material flowing deformation rule in the process of rectangular cup drawing, Modern Manuf. Eng., Vol. 4 (2004) 40–42.
  • [6] D. Banabic, H.-J. Bunge, K. Pohlandt, A.E. Tekkaya, Formability of Metallic Materials, Springer-Verlag, 2000.
  • [7] P. Van Houutte, Anisotropic plasticity, in Hartley P., Pillingar I., Sturgess C. (eds.), Numerical modeling of material deformation process: research, development and applications, Springer-Verlag, London, 1992.
  • [8] R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London, Vol. A193 (1948) 281–297.
  • [9] R. Hill, Theoretical plasticity of textured aggregates, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 85 (1979) 179–191.
  • [10] W.F. Hosford, A generalized isotropic yield function, Trans. ASME, J. App. Mech., Vol. E39 (1972) 607–609.
  • [11] R. Hill, A user-friendly theory of orthotropic plasticity in sheet metals, Int. J. Mech. Sci., Vol. 35, No. 1 (1993) 19–25.
  • [12] B. Haddag, T. Balan, F. Abed-Meraim, Int. J. Plasticity, Investigation of advanced strain-path dependent material models for sheet metal forming simulations, Vol. 23, no. 6 (2007) 951–979.
  • [13] S. Bouvier, J.L. Alves, M.C. Oliveira, L.F. Menezes, Comp. Mat. Sci., Modelling of anisotropic work-hardening behaviour of metallic materials subjected to strain-path changes, Vol. 32, no. 3-4 (2005) 301–315.
  • [14] A.P. Karafllis, M.C. Boyce, A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. Mech. Phys. Solids, Vol. 41, no. 12 (1993) 1859-1886.
  • [15] M. Hjijaj, Z.-Q. Feng, G. de Saxc, Z. Mróz, On the modelling of complex anisotropic frictional contact laws, Int. J. Eng. Sci., Vol. 42, No. 10 (2004) 1013–1034.
  • [16] Z. Mróz, S. Stupkiewicz, An anisotropic fricition and wear model, Int. J. Solids Struct., Vol. 31, No. 8 (1994) 1113–1131.
  • [17] S. Yi, J. Bohlen, F. Heinemann, D. Letzig, Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets, Acta Materialia, Vol. 58, No. 2 (2010) 592–605.
  • [18] ABAQUS version 6.7 - Theory Manual, Inc., Hibbit, Karlsson & Sorenson, Dassault Syst`emes, 2007.
  • [19] I. Ragai, D. Lazim, J.A. Nemes, Anisotropy and springback in draw-bending of stainless steel 410: experimental and numerical study, J. Mat. Proc. Technol., Vol. 166, no. 1 (2005) 116-127.
  • [20] A.B. da Rocha, A.D. Santos, P. Teixeira, M.C. Butuc, Analysis of plastic flow localization under strain paths changes and its coupling with finite element simulation in sheet metal forming, J. Mat. Proc. Technol., Vol. 209, no. 11 (2009) 5097-5109.
  • [21] M. T. Huber, Specific work of strain as a measure of material effort, Czasopismo Techniczne XXII, No. 3 (1904) 38-40, No. 4 (1904) 49-50, No. 5 (1904) 61-63, No. 6 (1904) 80-81, Lvov.
  • [22] R. Von-Mises, Mechanik der festen Körper im plastisch deformablen Zustand, Nachr. Ges. Wiss. Göttingen, Mathematisch-Physikalische Klasse (1913) 582-92.
  • [23] T. Trzepieciński, F. Stachowicz, Numerical modelling of a process of forming rectangular drawpieces, Rudy Metale, Vol. 50, nr 10-11 (2005) 582-585 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-909bff2b-5705-49d1-901c-291a25d533ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.