PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling Grain Growth Kinetics in Steels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Steel is a versatile material that has found widespread use because of its mechanical properties, its relatively low cost, and the ease with which it can be used in manufacturing process such as forming, welding and machining. Regarding to mechanical properties are strongly affected by grain size and chemical composition variations. Many industrial developments have been carried out both from the point of view of composition variation and grain size in order to exploit the effect of these variables to improve the mechanical proprieties of steels. It is also evident that grain growth are relevant to the mechanical properties of steels, thus suggesting the necessity of mathematical models able to predict the microstructural evolution after thermo cycles. It is therefore of primary importance to study microstructural changes, such as grain size variations of steels during isothermal treatments through the application of a mathematical model, able in general to describe the grain growth in metals. This paper deals with the grain growth modelling of steels based on the statistical theory of grain growth originally developed by Lücke [1] and here integrated to take into account the Zener drag effect and is therefore focused on the process description for the determination of the kinetics of grain growth curves temperature dependence.
Słowa kluczowe
Twórcy
autor
  • Università Degli Studi di Perugia, Dipartimento di Ingegneria, Via G. Duranti 93, 06125 Perugia, Italy
autor
  • Università Degli Studi di Perugia, Dipartimento di Ingegneria, Via G. Duranti 93, 06125 Perugia, Italy
Bibliografia
  • [1] G. Abbruzzese, I. Heckelman, K. Lücke, Acta Metal. et Mater. 40, 533-542 (1992).
  • [2] D. Rabee, Computational materials science: the simulation of materials microstructures and properties, 1998, Wiley-VHC.
  • [3] H. V. Atkinson, Acta Metal. 36, 469-491 (1988).
  • [4] F. J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, 1996, Pergamon Press.
  • [5] A. P. Beck, Advanced Physics 3, 245-252 (1954).
  • [6] M. Hillert, Acta Metal. 13, 227-238 (1965).
  • [7] I. M. Lifshitz, V. V Slyozov, Eksp. Teor. Fiz. 35, 479-287 (1958).
  • [8] C. Z. Wagner, Z. Elektrochem, Angew Phys. Chem., 65, 581-591 (1961)
  • [9] O. Hunderi, O. Ryum, Acta Metal. 29, 1737-1735 (1981).
  • [10] M. P. Anderson, D. J. Srolovitz, G. S. Grest, P. S Sahni, Acta Metal. 32, 783-791 (1992).
  • [11] H. Frost, C. V. Thompson, D. T. Walton, Grain growth in Polycrystalline Materials, 1992, Trans Tech Pubblications.
  • [12] D. Weiare, J. P. Kermode, Phil. Mag. B 48, 245-252 (1993).
  • [13] L. Q. Chen, Y. Z. Wang, JOM 11, 13-18 (1996).
  • [14] A. Di Schino, C. Guarnaschelli, Materials Science Forum 638-642, 3188-3193 (2010).
  • [15] A. Di Schino, P. E. Di Nunzio, Materials Letters 186, 86-89 (2017).
  • [16] J. E Burke, D. Turnbull, Recrystallization and Grain Growth, Progress in Metal Physics 3, 220-292 (1952).
  • [17] S. Illescas, J. Fernandez, J. M. Guileman, Mat. Lett. 62, 3478-3480 (2008).
  • [18] A. Giumelli, Mat. Lett. 38, 1212-1215 (1995).
  • [19] Y. Chongxiang, Z. Liwen, L. Shulun, G. Huiju, J. of Mat. Eng. and Perf. 19, 112-115 (2009).
  • [20] C. M Sellars, J.A Whiteman, Met. Sci. 13, 220-292 (1979).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90969b81-1438-4ac9-87c8-488f3cd96cd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.