PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Attaining Optimum Values of Colourfastness Properties of Sustainable Dyes on Cotton Fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Osiąganie optymalnych wartości właściwości trwałości kolorów barwników naturalnych na tkaninach bawełnianych
Języki publikacji
EN
Abstrakty
EN
The aim of this research was to identify optimum values of the colorfastness properties of sustainable dyes on cotton fabrics. Sustainable dyes are ecofriendly, biodegradable, economical and easily attainable from natural sources. The findings of this research established that good colourfastness properties of cellulosic fibres could be obtained using sustainable natural dyes. Experiments were carried out on 100% cotton voile fabrics of plain weave using four types of natural dyes: strawberry dye, beetroot dye, rose dye and China rose dye. Strawberry dye reacted with the cellulose of the cotton in an alkaline condition to form a stable covalent bond amid the dye and cellulose and showed outstanding colour fastness properties. The required experiments were conducted using the standard specified by ASTM and AATCC as stated in this paper. The colour strength properties, colour intensity properties, colour absorbency properties and colorfastness properties were investigated using a reflectance spectrophotometer and “Agilent Cary 630 FTIR Instrument” as stated in this paper. A sample dyeing machine – “Pad Dye Pad Steam” was used in this research to dye the cotton fabrics with sustainable natural dyes. The colorfastness properties were investigated using grey scale test results, and the colour strength and absorbency properties were tested using the spectrophotometer and FTIR instruments. The peak values of the FTIR instrument guaranteed the existence of the colourant or chromophore present in the dyestuffs, and exposed the best colourfastness properties. The findings of this research could be beneficial to personnel involved in textile industries who are in charge of dyeing cotton fabrics with natural dyes as well as controlling their colourfastness properties and colour intensity properties.
PL
Celem badań było określenie optymalnych wartości właściwości trwałości koloru barwników naturalnych na tkaninach bawełnianych. Naturalne barwniki są przyjazne dla środowiska, biodegradowalne, ekonomiczne i łatwo dostępne z naturalnych źródeł. Wyniki tych badań wykazały, że dobre właściwości trwałości koloru włókien celulozowych można uzyskać przy użyciu trwałych naturalnych barwników. Eksperymenty przeprowadzono na tkaninach woalowych w 100% bawełnianych o splocie płóciennym przy użyciu czterech rodzajów barwników naturalnych: barwnika truskawkowego, buraczkowego, różowego i chińskiego różowego. Barwnik truskawkowy przereagował z celulozą bawełny w środowisku zasadowym, tworząc stabilne wiązanie kowalencyjne między barwnikiem i celulozą i wykazał wyjątkową trwałość koloru. Wymagane eksperymenty przeprowadzono przy użyciu standardu określonego przez ASTM i AATCC. Właściwości trwałości koloru zbadano za pomocą wyników testu w skali szarości, a siłę koloru i właściwości absorpcyjne zbadano za pomocą spektrofotometrii w podczerwieni (FTIR).
Rocznik
Strony
110--117
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Bangladesh University of Textiles, Department of Fabric Engineering, Tegjaon, Dhaka, 1208, Bangladesh
  • Bangladesh University of Textiles, Faculty of Science and Engineering, Department of Textile Machinery Design and Maintenance, Tegjaon, Dhaka 1208, Bangladesh
  • SGS Bangladesh Limited, Physical Testing Department, Dhaka, Bangladesh
Bibliografia
  • 1. Shariful Islam, Alam SMM, Akter S. Investigation of the Colorfastness Properties of Natural Dyes on Cotton Fabrics. Vlakna a Textil (Fibers and Textiles) 2020; 27(2).
  • 2. Shariful Islam Alam SMM, Akter S. Identifying the Values of Whiteness Index, Strength and Weight of Cotton Spandex Woven Fabric in Peroxide Bleaching of Different Concentration. Vlakna a Textil (Fibers and Textiles) 2019; 26(4).
  • 3. dos Santos Silva PM, Fiaschitello TR, de Queiroz RS, Freeman HS, da Costa SA, Leo P, Montemor AF, da Costa SM. Natural Dye from Croton Urucurana Baill Bark: Extraction, Physicochemical Characterization, Textile Dyeing and Color Fastness Properties. Dyes and Pigments 2020; 173:107953.
  • 4. Iqbal K, Javid A, Rehman A, Rehman A, Ashraf M, Abid HA. Single Bath Dyeing of Modified Nylon/Cotton Blended Fabrics Using Direct/Acid Dyes. Pigment & Resin Technology 2020.
  • 5. Chakraborty L, Pandit P, Maulik SR. Acacia Auriculiformis-A Natural Dye Used for Simultaneous Coloration and Functional Finishing on Textiles. Journal of Cleaner Production 2020; 245, 118921.
  • 6. Adeel S, Saeed M, Abdullah A, Gull Khan S, Habib N, Kamran M, Zuber M. Ultrasonic Assisted Improved Dyeing of Cellulosic Fabric Using Vat Blue 4. Journal of Natural Fibers 2020; 17(1): pp.1-8.
  • 7. Yu Z, He H, Liu J, Li Y, Lin X, Zhang C, Li M. Simultaneous Dyeing and Deposition of Silver Nanoparticles on Cotton Fabric Through n Situ Green Synthesis with Black Rice Extract. Cellulose 2020; 27(3): 1829-1843.
  • 8. Phan K, Van Den Broeck E, Van Speybroeck V, De Clerck K, Raes K, De Meester S. The Potential of Anthocyanins from Blueberries as a Natural Dye for Cotton: A Combined Experimental and Theoretical Study. Dyes and Pigments 2020; 108180.
  • 9. Rezaie AB, Montazer M. A Cleaner and One-Step Approach for Robust Coloration of Polyester Fibers via Hydrophobic Magnetically Recoverable Photocatalyst Fatty Acids/Nano Iron Oxide Coating. Journal of Cleaner Production 2020; 244: 118673.
  • 10. Giacomini F, de Souza AAU, de Barros MASD. Cationization of Cotton with Ovalbumin to Improve Dyeing of Modified Cotton with Cochineal Natural Dye. Textile Research Journal 2020; 0040517519899652.
  • 11. Barriada-Bernal LG, Méndez-Lagunas LL, Aquino-González LV, Rodríguez-Ramírez J, Sandoval-Torres S, González IA. Evaluation of CochlospermumvitifoliumExtracts as Natural Dye in Different Natural and Synthetic Textiles. Autex Research Journal 2019; 1(ahead-of-print).
  • 12. dos Santos Silva PM, Fiaschitello TR, de Queiroz RS, Freeman HS, da Costa SA, Leo P, Montemor AF, da Costa SM. Natural Dye from Croton Urucuranabaill. Bark: Extraction, Physicochemical Characterization, Textile Dyeing and Color Fastness Properties. Dyes and Pigments 2020; 173, p.107953.
  • 13. Batool F, Iqbal N, Azeem M, Adeel S, Ali M. Sustainable Dyeing of Cotton Fabric Using Black Carrot (Daucuscarota L.) Plant Residue as a Source of Natural Colorant. Polish Journal of Environmental Studies 2019; 28(5).
  • 14. Ren Y, Fu R, Fang K, Chen W, Hao L, Xie R, Shi Z. Dyeing Cotton with Tea Extract Based on In-Situ Polymerization: An Innovative Mechanism of Coloring Cellulose Fibers by Industrial Crop Pigments. Industrial Crops and Products 2019; 142, p.111863.
  • 15. Ke G, Zhu K, Chowdhury MH. Dyeing of Cochineal Natural Dye on Cotton Fabrics Treated with Oxidant and Chitosan. Journal of Natural Fibers 2019:1-13.
  • 16. Santosa S, Prameswari NS. The Color Fastness of Cotton Cloth Dyed with Dye Extracted from Skin of Shallot (Allium Ascalonicum). Biodiversitas Journal of Biological Diversity 2019; 20(9).
  • 17. Uzumcu MB, Celik P, Gulumser T, Kadoglu H. A Comparison of Color Fastness Properties of Mulberry Silk and Tussah Silk Fabrics in Blends with Cellulosic Fibers. Journal of Natural Fibers 2019, pp. 1-10.
  • 18. Zia KM, Adeel S, Aslam H, Khosa MK, Zuber M. Influence of Ultrasonic Radiation on Extraction and Green Dyeing of Mordanted Cotton Using Neem Bark Extract. Journal of Industrial and Engineering Chemistry 2019; 77: 317-322.
  • 19. Adeel S, Zuber M, Zia KM. Microwave -Assisted Extraction and Dyeing of Chemical and Bio-Mordanted Cotton Fabric Using Harmal Seeds as a Source of Natural Dye. Environmental Science and Pollution Research 2018; 25(11): 11100-11110.
  • 20. Adeel S, Saeed M, Abdullah A, Rehman F, Salman M, Kamran M, Zuber M, Iqbal M. Microwave Assisted Modulation of Vat Dyeing of Cellulosic Fiber: Improvement in Color Characteristics. Journal of Natural Fibers 2018; 15(4): 517-526.
  • 21. Haji A, Nasiriboroumand M, Qavamnia SS. Cotton Dyeing and Antibacterial Finishing Using Agricultural Waste by an Eco-Friendly Process Optimized by Response Surface Methodology. Fibers and Polymers 2018; 19(11): 2359-2364.
  • 22. Pisitsak P, Tungsombatvisit N, Singhanu K. Utilization of Waste Protein from Antarctic Krill Oil Production and Natural Dye to Impart Durable UV-Properties to Cotton Textiles. Journal of Cleaner Production 2018; 174: 1215-1223.
  • 23. Ahmed HB, Emam HE, Mashaly HM, Rehan M. Nanosilver Leverage on Reactive Dyeing of Cellulose Fibers: Color Shading, Color Fastness and Biocidal Potentials. Carbohydrate Polymers 2018; 186: 310-320.
  • 24. Ren Y, Gong J, Fu R, Li Z, Li Q, Zhang J, Yu Z, Cheng X. Dyeing and Antibacterial Properties of Cotton Dyed with Prodigiosinsnanomicelles Produced by Microbial Fermentation. Dyes and Pigments 2017; 138: 147-153.
  • 25. Hussaan M, Iqbal N, Adeel S, Azeem M, Javed MT, Raza A. Microwave-Assisted Enhancement of Milkweed (Calotropisprocera L.) Leaves as an Eco-Friendly Source of Natural Colorants for Textile. Environmental Science and Pollution Research 2017; 24(5): 5089-5094.
  • 26. Repon MR, Islam MT, Al Mamun MA. Ecological Risk Assessment and Health Safety Speculation During Color Fastness Properties Enhancement of Natural Dyed Cotton Through Metallic Mordants. Fashion and Textiles 2017; 4(1): 24.
  • 27. Zahid M, Bhatti IA, Adeel S, Saba S. Modification of Cotton Fabric for Textile Dyeing: Industrial Mercerization Versus Gamma Irradiation. The Journal of The Textile Institute 2017; 108(2): 287-292.
  • 28. Hussaan M, Iqbal N, Adeel S, Azeem M, Javed MT, Raza A. Microwave-Assisted Enhancement of Milkweed (Calotropisprocera L.) Leaves as an Eco-Friendly Source of Natural Colorants for Textile. Environmental Science and Pollution Research 2017; 24(5): 5089-5094.
  • 29. Souissi M, Guesmi A, Moussa A. Valorization of Natural Dye Extracted from Date Palm Pits (Phoenix Dactylifera) for Dyeing of Cotton Fabric. Part 2: Optimization of Dyeing Process and Improvement of Colorfastness with Biological Mordants. Journal Of Cleaner Production 2018; 204: 1143-1153.
  • 30. Benli H, Bahtiyari Mİ. Use of Ultrasound in Biopreparation and Natural Dyeing of Cotton Fabric in a Single Bath. Cellulose 2015; 22(1): 867-877.
  • 31. Khan AA, Iqbal N, Adeel S, Azeem M, Batool F, Bhatti IA. Extraction of Natural Dye from Red Calico Leaves: Gamma Ray Assisted Improvements in Colour Strength and Fastness Properties. Dyes and Pigments 2014; 103: 50-54.
  • 32. Batool F, Adeel S, Azeem M, Khan AA, Bhatti IA, Ghaffar A, Iqbal N. Gamma Radiations Induced Improvement in Dyeing Properties and Colorfastness of Cotton Fabrics Dyed with Chicken Gizzard Leaves Extracts. Radiation Physics and Chemistry 2013; 89: 33-37.
  • 33. Hong KH, Bae JH, Jin SR, Yang JS. Preparation and Properties of Multi-Functionalized Cotton Fabrics Treated by Extracts of Gromwell and Gallnut. Cellulose 2012; 19(2): 507-515.
  • 34. Zuber M, Zia KM, Tabassum S, Jamil T, Barkaat-ul-Hasin S, Khosa MK. Preparation of Rich Handles Soft Cellulosic Fabric using Amino Silicone Based Softener, Part II: Colorfastness Properties. International Journal of Biological Macromolecules 2011; 49(1): 1-6.
  • 35. Lee YH, Hwang EK, Jung YJ, Do SK, Kim HD. Dyeing And Deodorizing Properties of Cotton, Silk, Wool Fabrics Dyed with Amur Corktree, Dryopteriscrassirhizoma, Chrysanthemum Boreale, Artemisia Extracts. Journal of Applied Polymer Science 2010; 115(4): 2246-2253.
  • 36. Samanta AK, Agarwal P, Datta S. Studies on Color Interaction Parameters and Color Fastness Properties For Dyeing Of Cotton Fabrics With Binary Mixtures Of Jackfruit Wood And Other Natural Dyes. Journal of Natural Fibers, 20096(2), pp.171-190.
  • 37. Kitkulnumchai Y, Ajavakom A, Sukwattanasinitt M. Treatment of Oxidized Cellulose Fabric with Chitosan and its Surface Activity Towards Anionic Reactive Dyes. Cellulose 2008; 15(4): 599-608.
  • 38. Park Y, Koo K, Kim S, Choe J. Improving the Colorfastness of Poly (Ethylene Terephthalate) Fabrics with the Natural Dye of Caesalpiniasappan L. Wood Extract and the Effect Of Chitosan and Low-Temperature Plasma. Journal of Applied Polymer Science 2008; 109(1): 160-166.
  • 39. Kim H, Park S. Effects of Introduced Chemical Groups on the Dyeability of Cotton Fabrics with Phellodendronamurenserupr. Dyes and Pigments 2007; 75(2): 351-355.
  • 40. Kim J, Kim SY, Choe EK. The Beneficial Influence of Enzymatic Scouring on Cotton Properties. Journal of Natural Fibers 2006; 2(4): 39-52.
  • 41. El-Nagar K, Sanad SH, Mohamed AS, Ramadan A. Mechanical Properties and Stability to Light Exposure for Dyed Egyptian Cotton Fabrics with Natural and Synthetic Dyes. Polymer-Plastics Technology and Engineering 2005; 44(7): 1269-1279.
  • 42. Kim TK, Son YA. Effect of Reactive Anionic Agent on Dyeing of Cellulosic Fibers with a Berberine Colorant–Part 2: Anionic Agent Treatment and Antimicrobial Activity of a Berberine Dyeing. Dyes and Pigments 2005; 64(1): 85-89.
  • 43. Shin Y, Cho A. Natural Dyeing Using the Colorants Extracted from American Fleabane (Part II)–Dyeing Properties on Cotton. Journal of the Korean Society of Clothing and Textiles 2004; 28(12): 1625-1631.
  • 44. Bechtold T, Turcanu A, Ganglberger E, Geissler S. Natural Dyes in Modern Textile Dyehouses-How to Combine Experiences of Two Centuries to Meet the Demands of the Future? Journal of Cleaner Production 2003; 11(5): 499-509.
  • 45. Mokhtar SM, Mostapha TB, Sabaa MW. Γ-Radiation Induced Graft Copolymerization of N-Phenyl-and N-P-Hydroxyphenylmaleimide onto Cotton Fabrics. Polymer-Plastics Technology and Engineering 2002; 41(1): 183-197.
  • 46. Räisänen R, Nousiainen P, Hynninen PH. Emodin and Dermocybin Natural Anthraquinones as Mordant Dyes for Wool and Polyamide. Textile Research Journal 2001; 71(11): 1016-1022.
  • 47. Cai Y, David SK, Pailthorpe MT. Dyeing of Jute and Jute/Cotton Blend Fabrics with 2: 1 Pre-Metallised Dyes. Dyes and Pigments 2000; 45(2): 161-168.
  • 48. Kaldany M, Berman M, Sigurdardottir S. Evaluating the Stability of Commercially Available Artists’ Coloring Materials used to Create Compensation Infills for Losses in Textiles. Journal of the American Institute For Conservation 1999; 38(3): 443-458.
  • 49. Kubokawa H, Hatakeyama T. Relationship between Flame Retardation and Phase Transition Behavior of Polyester Fabrics Treated with a Bromine-Containing Compound. Textile Research Journal 1998; 68(7): 502-508.
  • 50. Leimer S, Moore MA, Goldsmith E. Effects of Laundering and Exposure to Light on Environmentally-Improved Fabrics. Journal of Testing and Evaluation 1997; 25(5): 497-502.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90906b4a-b8b7-4778-82d1-52f0add378fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.