PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Understanding the current-voltage characteristics of industrial crystalline silicon solar cells by considering inhomogeneous current distributions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solar cells made from multi- or mono-crystalline silicon wafers are the base of today’s photovoltaic’s industry. These devices are essentially large-area semiconductor p-n junctions. Technically, solar cells have a relatively simple structure, and the theory of p-n junctions was established already decades ago. The generally accepted model for describing them is the so-called two-diode model. However, the current-voltage characteristics of industrial solar cells, particularly of that made from multi-crystalline silicon material, show significant deviations from established diode theory. These deviations regard the forward and the reverse dark characteristics as well as the relation between the illuminated characteristics to the dark ones. In the recent years it has been found that the characteristics of industrial solar cells can only be understood by taking into account local inhomogeneities of the dark current flow. Such inhomogeneities can be investigated by applying lock-inthermography techniques. Based on these and other investigations, meanwhile the basic properties of industrial silicon solar cells are well understood. This contribution reviews the most important experimental results leading to the present state of physical understanding of the dark and illuminated characteristics of multi-crystalline industrial solar cells. This analysis should be helpful for the continuing process of optimizing such cells for further increasing their energy conversion efficiency.
Twórcy
  • Max Planck Institute of Microstructure Physics, 2 Weinberg, D-06120 Halle, Germany
Bibliografia
  • 1. Hering G.: „Das Jahr des Drachen“, Photon 4, 42-63 (2012). (in German).
  • 2. http://en.wikipedia.org/wiki/Solar_cell#History_of_solar_ cells.
  • 3. Green M. A., Emery K., Hishikawa Y., Warta W., and Dunlop E. D.: “Solar cell efficiency tables (version 39)”, Prog. Photovolt: Res. Appl. 20, 12-20 (2012).
  • 4. Sze S. M., and Ng K. K.: Physics of Semiconductor Devices, Wiley-Interscience, Hoboken, 2007.
  • 5. Müller A., Ghosh M., Sonnenschein R. and Woiditsch P.: „Silicon for photovoltaic applications”, Mater. Sci. Eng. B134, 257-262 (2006).
  • 6. Queisser H. J.: “Forward characteristics and efficiencies of silicon solar cells”,Solid State Electron. 5, 1-10 (1962).
  • 7. Kaminski A., Marchand J. J., El Omari H., Laugier A., Le Q. N. and Sarti D.: “Conduction processes in silicon materials”, Proc. 25th IEEE Phot. Spec. Conf., pp. 573-576, Washington DC, 1996.
  • 8. Schenk A. and Krumbein U.: “Coupled defect-level recombination: Theory and application to anomalous diode characteristics”, J. Appl. Phys. 78, 3185-3192 (1995).
  • 9. McIntosh K. R.: “Lumps, humps and bumps: Three detrimental effects in the current-voltage curve of silicon solar cells”, Ph.D. Thesis, University of New South Wales, Sydney, 2001.
  • 10. van der Heide A. S. H., Schönecker A., Bultman J. H. and Sinke W. C.: “Explanation of high solar cell diode factors by nonuniform contact resistance”, Prog. Photovolt: Res. Appl. 13, 3-16 (2005).
  • 11. Green M. A.: Solar Cells - Operating Principles, Technology and System Applications, UNSW, Sydney 1998.
  • 12. Würfel P.: Physics of Solar Cells - From Principles To New Concept, Wiley, Weinheim, 2005.
  • 13. Simo A. and Martinuzzi S.: “Hot spots and heavily dislocated regions in multicrystalline silicon cells”, Proc. 21st IEEE Phot. Spec. Conf., pp. 800-805, Kissimee, USA, 1990.
  • 14. Breitenstein O., Eberhardt W. and Iwig K.: „Imaging the local forward current density of solar cells by dynamical precision contact thermography”, Proc. 1st World Conf. on Photovoltaic Energy Conversion, pp. 1633-1836, Waikaloa, Hawaii, 1994.
  • 15. Breitenstein O., Iwig K. and Konovalov I.: “Evaluation of local electrical parameters of solar cells by dynamic (lock-in) thermography”, Phys. Status Solidi A160, 271-282 (1997).
  • 16. Kuo P. K., Ahmed T., Jin H. and Thomas R. L.: “Phaselocked image acquisition in thermography”, Proc. SPIE 1004, 41-45 (1988).
  • 17. Busse G., Wu D. and Karpen W.: “Thermal wave imaging with phase sensitive modulated thermography”, J. Appl. Phys. 71, 3962-2965 (1992).
  • 18. Breitenstein O., Langenkamp M., Altmann F. and Katzer D.: „Microscopic lock-in thermography investigations of leakage sites in integrated circuits”, Rev. Sci. Instr. 71, 4155-4160 (2000).
  • 19. Breitenstei O., Langenkamp M., Lang O. and Schirrmacher A.: “Shunts due to laser scribing of solar cells evaluated by highly sensitive lock-in thermography”, Sol. Energ. Mat. Sol. C. 65, 55-62 (2001).
  • 20. Breitenstein O., Warta W. and Langenkamp M.: Lock-in Thermography - Basics and Use for Evaluating Electronic Devices and Materials (second edition), Springer, Heidelberg/New York 2010.
  • 21. Breitenstein O.: “Nondestructive local analysis of current-voltage characteristics of solar cells by lock-in thermography”, Sol. Energ. Mat. Sol. C. 95, 2933-2936 (2011).
  • 22. Breitenstein O.: “Local efficiency analysis of solar cells based on lock-in thermography”, Sol. Energ. Mat. Sol. C. 107, 381-389 (2012).
  • 23. Breitenstein O., Bauer J., Bothe K., Hinken D., Müller J., Kwapil W., Schubert M. C. and Warta W.: „Can luminescence imaging replace lock-in thermography on solar cells?”, IEEE J. Photovoltaics 1, 159-167 (2011).
  • 24. Shockley W.: “The theory of p-n junctions in semiconductors and p-n junction transistors”, Bell Syst. Tec. J. 28, 435-489 (1949).
  • 25. Sah C. T., Noice R. N., Shockley W.: “Carrier generation and recombination in p-n junctions and p-n junction characteristics”, Proc. IRE 45, 1228-1243 (1957).
  • 26. http://pveducation.org/pvcdrom
  • 27. Breitenstein O. and Rakotoniaina J.-P.: “Electrothermal simulation of a defect in a solar cell”. J. Appl. Phys. 97, 074905 (2005).
  • 28. McIntosh K. R., Altermatt P. P. and Heiser G.: “Depletion-region recombination in silicon solar cells: When does mdr=2?”, Proc. 16th Eur. Phot. Solar Energy Conf., pp. 251-254, Glasgow, 2000.
  • 29. Miller S. L.: “Ionization rates for holes and electrons in silicon”, Physical Review 105, 1246-1249 (1957).
  • 30. Sze S. M. and Gibbons G.: “Effect of junction curvature on breakdown voltage in semiconductors”, Solid State Electron. 9, 831-845 (1966).
  • 31. Breitenstein O. and Heydenreich J.: „Non-ideal I-V characteristics of block-cast silicon solar cells”, Solid-State Phenomena 37-38, 139-144 (1994).
  • 32. Hermle M., Dicker J., Warta W., Glunz S. W. and Willeke G.: „Analysis of edge recombination for high-efficiency solar cells at low illumination densities”, Proc. 3rd World Conf. Phot. Energ. Conversion, pp. 1009-1012, Osaka, 2003.
  • 33. Breitenstein O., Altermatt P., Ramspeck K., Green M. A., Zhao J. and Schenk A.: “Interpretation of commonly observed I-V characteristics of c-Si cells having ideality factors larger than two”, Proc. 4th World Conf. Phot. Energ. Conversion, pp. 789-884, Waikaloa, Hawaii 2006.
  • 34. Breitenstein O., Altermatt P., Ramspeck K. and Schenk A.: „The origin of ideality factors n > 2 of shunts and surfaces in the dark I-V curves of Si solar cells”, Proc. 21st Eur. Phot. Solar Energ. Conf., pp. 652-628, Dresden, 2006.
  • 35. Steingrube S., Breitenstein O., Ramspeck K., Glunz S., Schenk A. and Altermatt P. P.: “Explanation of commonly observed shunt currents in c-Si solar cells by means of recombination statistics beyond the Shockley-Read-Hall approximation”, J. Appl. Phys. 110, 014515 (2011).
  • 36. Kühn R., Fath P. and Bucher E.: “Effects of pn-junction bordering on surfaces investigated by means of 2D-modeling”, Proc. 28th IEEE Phot. Special. Conf., pp. 116-119, Anchorage, 2000.
  • 37. Nardone M., Karpov V. G., Shvydka D. and Attygalle M. L. C.: “Theory of electronic transport in non-crystalline junctions”, J. Appl. Phys. 106, 074503 (2009).
  • 38. Sinton R. A.: “Predicting multi-crystalline solar cell efficiency from lifetime measured during cell fabrication” Proc. 3rd World Conf. Phot. Energ. Conversion, pp. 1028-1031, Osaka, 2003.
  • 39. Rißland S. and Breitenstein O.: “High resolution saturation current density imaging at grain boundaries by lock-in thermography”, Solar Energ. Mat. Sol. C. 104, 121-124 (2012).
  • 40. Macdonald D. and Cuevas A.: “Reduced fill factors in multi-crystalline silicon solar cells due to injection-level dependent bulk recombination lifetimes”, Prog. Photovolt: Res. Appl. 8, 3-375 (2000).
  • 41. Robinson S. J., Wenham S. R., Altermatt P. P., Aberle A. G., Heiser G. and Green M. A.: “Recombination rate saturation mechanisms at oxidized surfaces of high-efficiency solar cells”, J. Appl. Phys. 78, 4740-4754 (1995).
  • 42. Schröter W., Kronewitz J., Gnauert U., Riedel F. and Seibt M.: “Bandlike and localized states at extended defects in silicon”, Phys. Rev. B52, 13 726-13 729 (1995).
  • 43. Dubois S., Palais O., Pasquinelli M., Martinuzzi S., Jaussaud C. and Rondel N.: “Influence of iron contamination on the performances of single-crystalline silicon solar cells: Computed and experimental results”, J. Appl. Phys. 100, 024510 (2006).
  • 44. Rißland S. and Breitenstein O.: “Evaluation of luminescence images of solar cells for injection-level dependent lifetimes”, Sol. Energ. Mat. Sol. C. 111, 112-114 (2010).
  • 45. Cousins P. J. and Cotter J. E.: “The influence of diffusion-induced dislocations on high-efficiency solar cells”, IEEE T. Electron Devices 53, 457-464 (2006).
  • 46. Altermatt P. P., Schumacher J. O., Cuevas A., Kerr M. J., Glunz S. W., King R. R., Heiser G. and Schenk A.: “Numerical modelling of highly doped Si:P emitters based on Fermi-Dirac statistics and self-consistent material parameters”, J. Appl. Phys. 92, 3187-3197 (2002).
  • 47. Reichel C., Granek F., Benick J., Schulz-Wittmann O. and Glunz S. W.: “Comparison of emitter saturation current densities determined by injection-dependent lifetime spectroscopy in high and low injection regimes”, Prog. Photovolt: Res. Appl. 20, 21-30 (2012).
  • 48. Breitenstein O., Rakotoniaina J. P., Al Rifai M. H. and Werner M.: “Shunt types in crystalline silicon solar cells”, Prog. Photovolt: Res. Appli. 12, 529-538 (2004).
  • 49. Rakotoniaina J. P., Breitenstein O., Werner M., Al Rifai M. H., Buonassisi T., Pickett M. D., Ghosh M., Müller A. and Le Quang N.: “Distribution and formation of silicon carbide and silicon nitride precipitates in block-cast multicrystalline silicon”, Proc. 20th Eur. Phot. Solar Energ. Conf., pp. 773-776, Barcelona, 2005.
  • 50. Bauer J., Breitenstein O., Lotnyk A. and Blumtritt H.: “Investigations on different types of filaments in multi-crystalline silicon for solar cells”, Proc. 22nd Eur. Phot. Solar Energ. Conf., pp. 994-997, Milan, 2007.
  • 51. Bauer J., Breitenstein O. and Rakotoniaina J. P.: „Electronic activity of SiC precipitates in multicrystalline solar silicon”, Phys. Status Solidi A204, 2190-2195 (2007).
  • 52. Mott N. F.: Metal-Insulator Transitions, Taylor & Francis, London 1990.
  • 53. Myong S. Y. and Lim K. S.: “Universal single-phonon variable range hopping for inorganic semiconducting polycrystalline films”, Appl. Phys. Lett. 88, 222110 (2006).
  • 54. Wagner J. M., Bauer J. and Breitenstein O.: “Classification of pre-breakdown phenomena in multicrystalline silicon solar cells”, Proc. 24th Eur. Phot. Solar Energ. Conf., pp. 925-929, Hamburg, 2009.
  • 55. Bauer J.: “The origins of non-ideal current-voltage characteristics of silicon solar cells”, Ph.D. Thesis, Martin-Luther University Halle-Wittenberg, 2009, http://digital.bibliothek.uni-halle.de/hs/content/ titleinfo/474968, available at Südwestdeutscher Verlag für Hochschulschriften, Saarbrücken (2012), ISBN 978-3-8381-2865-8.
  • 56. Breitenstein O., Bauer J., Bothe K., Kwapil W., Lausch D., Rau U., Schmidt J., Schneemann M., Schubert M. C., Wagner J.-M., and Warta W.: “Understanding junction breakdown in multicrystalline solar cells”, J. Appl. Phys. 109, 071101 (2011).
  • 57. Kwapil W., Wagner M., Schubert M. C. and Warta W.: “High net doping concentration responsible for critical diode breakdown behaviour of upgraded metallurgical grade multicrystalline silicon solar cells”, J. Appl. Phys. 108, 023708 (2010).
  • 58. Lausch D., Petter K., Bakowski R., Czekalla C., Lenzner J., Wenckstern H. and Grundmann M.: “Identification of pre-breakdown mechanism of silicon solar cells at low reverse voltages”, Appl. Phys. Lett. 97, 073506 (2010).
  • 59. Kwapil W., Gundel P., Schubert M. C., Heinz F. D., Warta W., Weber E. R., Goetzberger A. and Martinez-Criado G.: “Observation of metal precipitates at prebreakdown sites in multicrystalline silicon solar cells”, Appl. Phys. Lett. 95, 232113 (2009).
  • 60. Hähnel A., Bauer J., Blumtritt H. and Breitenstein O.: “Electron microscope verification of prebreakdown-inducing α-FeSi2 needles in multicrystalline silicon solar cells”, J. Appl. Phys. 113, 044505 (2013).
  • 61. Schneemann M., Helbig A., Kirchartz T., Carius R. and Rau U.: “Reverse biased electroluminescence spectroscopy of crystalline solar cells with high spatial resolution”, Phys. Status Solidi A207, 2597-2600 (2010).
  • 62. Bauer J., Wagner J. M., Lotnyk A., Blumtritt H., Lim B., Schmidt J. and Breitenstein O.: „Hot spots in multicrystalline silicon solar cells: avalanche breakdown due to etch pits”, Phys. Status Solidi RRL 3, 40-42 (2009).
  • 63. Breitenstein O., Bauer J., Wagner J. M., Zakharov N., Blumtritt H., Lotnyk A., Kasemann M., Kwapil W. and Warta W.: “Defect-induced breakdown in multicrystalline silicon solar cells”, IEEE T. Electron Devices 57, 2227-2234 (2010).
  • 64. Nievendick J., Kwapil W. and Rentsch J.: “Influence of trench structures induced by texturization on the breakdown voltage of multicrystalline solar cells”, Proc. 37th IEEE Photovoltaic Specialists Conference, pp. 2913-2917, Seattle, 2011.
  • 65. Bauer J., Lausch D., Blumtritt H., Zakharov N. and Breitenstein O.: „Avalanche breakdown in multicrystalline solar cells due to preferred phosphorous diffusion at extended defects”, Prog. Photovolt: Res. Appl., DOI: 10.1002/pip.2220.
  • 66. Dubois S., Veirman J., Enjalbert N. and Scheiblin P.: “Hard breakdown mechanism of compensated p-type and n-type single-crystalline silicon solar cells”, Solid State Electron. 76, 36-39 (2012).
  • 67. Kinch M. A.: “Electronic properties of HgCdTe”, J. Vac. Sci. Technol. 21, 215-219 (1982).
  • 68. Altermatt P. P., Heiser G., Aberle A. G., Wang A., Zhao J., Robinson S. J., Bowden S. and Green M. A.: „Spatially resolved analysis and minimization of resistive losses in high-efficiency Si solar cells”, Prog. Photovolt: Res. Appl. 4, 399-414 (1996).
  • 69. Araújo G. L., Cuevas A. and Ruiz J. M.: “The effect of distributed series resistance on the dark and illuminated current-voltage characteristics of solar cells”, IEEE T. Electron Devices 33, 391-401 (1986).
  • 70. Fischer B., Fath P. and Bucher E.: “Evaluation of solar cell J(V)-measurements with a distributed series resistance model”, Proc. 16th Eur. Photovoltaic Solar Energy Conf., pp. 1365-1368, Glasgow, 2000.
  • 71. Breitenstein O. and Rißland S.: “A two-diode model regarding the distributed series resistance”, Sol. Energ. Mat. Sol. C. 110, 77-86 (2013).
  • 72. Robinson S. J., Aberle A. G. and Green M. A.: “Departures from the principle of superposition in silicon solar cells”, J. Appl. Phys. 76, 7920-7930 (1994).
  • 73. http://www.pveducation.org/pvcdrom/characterisation/pc1d
  • 74. Trupke T., Pink E., Bardos R. A. and Abbott M. D.: “Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging”, Appl. Phys. Lett. 90, 093506 (2007).
  • 75. Sugianto A., Tjahjono B. S., Mai L. and Wenham S. R.: “Investigations of unusual shunting behaviour due to phototransistor effect in n-type aluminum-alloyed rear-junction solar cells”, Sol. Energ. Mat. Sol. C. 93, 1986-1993 (2009).
  • 76. Khan F., Singh S. N. and Husain M.: “Effect of illumination on cell parameters of a silicon solar cell”, Sol. Energ. Mat. Sol. C. 94, 1473-1476 (2010).
  • 77. Bowden S. and Rohatgi A.: “Rapid and accurate determination of series resistance and fill factor losses in industrial silicon solar cells”, Proc. 17th Eur. Phot. Solar Energ. Conf., pp. 1802-1805, Munich, 2001.
  • 78. Sugianto A., Breitenstein O., Tjahjono B. S., Lennon A., Mai L. and Wenham S. R.: “Impact of localized regions with very high series resistances on solar cell performance”, Prog. Photovolt: Res. Appl. 20, 452-462 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9089cb62-980c-45be-9581-aa25a53e07d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.