Journal of Polish Safety and Reliability Associatio
Summer Safety and Reliability Seminafslume 4, Number 1, 2013

Sugier Jarostaw
Wroctaw University of Technology, Wroctaw, Poland

Low-cost hardware implementations of Salsa20 streamipher in
programmable devices

Keywords

FPGA, stream cipher, hardware implementation, pip®, iterative architecture

Abstract

Salsa20 is a 256-bit stream cipher that has bespoped to eSTREAM, ECRYPT Stream Cipher Projed, an
is considered to be one of the most secure antivediafastest proposals. This paper describes el
implementation of various architectures of thisheipin popular Field Programmable Gate Arrays (FRGA
The implemented architectures are based on theuoogled data flow organization and after pipeimithey
can reach the throughput in the range of 20 — 3ps@wen after fully automatic implementation in plap
low-cost families of Spartan-3 and Spartan-6 froitimX. More resource-limited iterative architectarachieve
speed of 1 — 2 Ghps. The results that are includebis work present potential of the algorithm wheis
implemented in a specific FPGA environment and g®vsome information for evaluation of cipher
effectiveness in contemporary popular programmdeéidces.

1. Introduction software provided by the chip manufacturer, without

. L) . _any special “handmade” optimization, neither in
A hardware implementation is an important option layout nor routing.

for every cipher and numerous realizations usinGrhg text is organized as follows. In the next secti
both mask- (ASIC) and field- programmable gate,;q giscuss organization of the Salsa20 algorithm as

arrays (FPGA) silicon Qevices have been_develope hash function and as a stream cipher, then we
for AES contest candidates or for algorithms that;.oquce the three basic kinds of cipher

took part in the ECRYPT project. In this work we jmplementation in hardware: the combinational, the
present results obtained after implementation o

pipelined and the iterative one, and finally we

different architectures of Salsa20 stream cipher Mgy g1yate the results of automatic implementation of
popular-grade FPGA devices. While most of they,ase architectures in the two selected families of
solutions described in the literature are custochize FPGA devices.

for specific device architectures and/or operating

envi'ronments., gnd they are highly optimizgd to"reachz_ The Salsa20 cipher

maximum efficiency either in speed or in size,hist

work we look from different point at the task of Salsa20 family of stream ciphers [2]-[3] has been
cipher implementation. developed by Daniel J. Bernstein from the Univgrsit
The terms “popular-grade” or “low-cost” that we of lllinois at Chicago, USA, in 2005 and submitted
refer to in the title and in the text are underdtas the eSTREAM project. After passing all phases of
follows: 1)the programmable devices used forselection unmodified it has been included in tinalfi
implementation are chosen from inexpensive,portfolio of Profile 1 (software) ciphers along twvid
popular and commonly used line of FPGA chips, other proposals.

widely available on the market; 2)the design isAt its core the Salsa20 cipher is a hash function
described in hardware description language on thevhich operates in the counter mode as a stream
relatively high level of abstraction (no less than cipher: the 64B|yte] input consisting of 32B of the
Register Transfer Level, RTL) and then synthesizedkey (or twice repeated 16B key) together with 8B
and implemented fully automatically by standard nonce plus 8B counter and 16 constants bytes is

121

Sugier Jarostaw
Low-cost hardware implementations of Salsa20 streigmer in programmable devices

hashed into 64B result which is then XOR’ed with w’ values. The flow of data which results from the
the plaintextStateof the cipher is also 64B wide and above equations is graphically visualizedrigure 1

is represented as a series of gBtewords During

decryption the same hash result is XOR’ed with the _guarterrounc

ciphertext stream to produce plaintext. There is no‘v“v’u; D= Wi’
feedback of the data stream to the hash stream. P <<7 5

i Wl:_ —D Wy
2.1. The Salsa20 hash function ; —5
The Salsa20 hash function consists in application o w2-§- @ wy'
20 rounds which are executed over the state(qo, i i
o, --- Oi5), Where eachy represents a single 32b[it] . : ,
state word. Different permutations of the statedgor W™ .- N
are used as input to even- and odd-numbered rounds - sum mod™
but otherwise the in-round processing is identszal @ - ExclusiveOr

the whole organization is very uniform. Moreover, i [<<n]- left rotation

the entire algorithm only the following three basic _. . :
transformations are used, all operating on therenti Figure 1.Transformations of the state words in the

32b words: Salsa20 quarterround function

- bitwise Exclusive-Or (XOR) of the two words, L .

denoted asl- Four quarterrounds operating in parallel constitute
enoted as;, a single round of the cipher and this can be onbef

) S:'?ceﬂﬁgrg'sogoﬂ:)?hgrvok'r:I(\;IO(;?Z dg.?g?]tedsezsh;etwo kinds: arow roundor acolumn round A row
(si ! ! tion u round function is defined aswround q) =q’ such

there is no risk of confusion); that
- rotation to the left by the given (constant) number

of bits, denoted as <<. Vot A A —
In contrast to the contemporary symmetric block (qo,, q11, qz’, C{3,) _ quar:errouncﬂqo, G, Cp,)
ciphers, in Salsa20 there is no key pre-processing 8?0’, q(;nq;sqiql)_ :qgﬁgﬁgﬁgﬂﬁ%jea??gs)qg)
path running in parallel with data (cipher) pathiabh N B
would compute a separate key for each round; the (@us', an?, ', Cue) =
user supplied external key is embedded into thetinp quarterrounddgs, iz, Gz, G)
64 bytes producing directly half of the 16 statedgo
and then the 512b vector is processed in its éytire
The elementary organizational unit of the cipher is
a quarterroundfunction which transforms a group of
four state wordsguarterrorundwg, Wi, Wo, Ws) =
(Wo', Wy', Wy', Wy') such that

whereas a column round function is defined as
columnround g) =q’ such that

(oo, g¢, g¢, iz’) = quarterround o, g4, Gs, Q12)
(05, o', i3, g’) = quarterround gs, Qo, Q13, Gz)
(qu', oue, 02, Q') =

guarterround quo, gi4, g2, G)
(s, 08, 07, Opr') =

quarterround s, O, g7, Qi1)

Wl’ :W]_D ((W0+W3) <<7)
W =w, O ((W1’+WO) <<9)
ws' = w; O ((WZ’ + Wl’) << 13)
W' =Wo [((Ws' + w,) << 18) Justification for the round names becomes evident
after the quarterround inputs are marked on the 16
The above equations are given in specific order inyords of the state visualized as a 4x4 matrix, as it
which they can be sequentially executed modifyingjs done in Figure 2 In both cases the four
w; wordsin place first, w, is replaced with the new quarterround functions are loaded with, respegtjvel
valuew;’ which is computed from the currewy and (ows (in a row round) and columns (in a column
w; words, thenw, is replaced with the new value round) extracted from the matrix and then rotated:
computed fronw,” and wo, thenws is replaced with the k-th row or columnK = 0 ... 3) is rotated by
the value computed from,” andw;’, and finallyws positions to the left or upwards so that the diagon

is replaced with the value computed framf and elements are given always as the first quarterround

W, In this way the quarterround can be grgumentwy.

implemented in software as a chain of four A column round followed by a row round make up
transformations executed one after another withoul sg callediouble round

any temporary registers for intermediate storage of
doubleroun¢lg) =rowround columnroundq))

122

Journal of Polish Safety and Reliability Associatio
Summer Safety and Reliability Seminafslume 4, Number 1, 2013

o & @ | with plaintext to give ciphertext (during encryptjo

I or with ciphertext to give plaintext (during
%1% % & decryption). This scheme is outlinedrigure 3 The
G O || Go Ou simple XOR operation as the final and the only

transformation applied to the plaintext makes
encryption and decryption equally efficient. It als
allows to use the same hash module in both

iz O3 CI14| | Chs

Yo Iq—ll % || % operations what significantly simplifies either
%00 ||la software or hardware implementations.
O | |Go || Cro| | Qo1
Counter
Qu2| | Cha| | Cha| | Chs
. 8B Constants
Figure 2.Arrangement of the state words at the NONCE sy {
inputs to the quarterrounds in a row round (above) Key mpil8328 88 168
and a column round (below) ‘k vV yn yor
Having introduced all the above elementary Salsa20 hash
components the final hash function can be defined. function

In short, to generate the Salsa20 hash value 6diBa -
inputx, first the double round is applied ten times to o c
it and then the result is added: Plaintex | //ﬁ‘1B —+) > Ciphertext

Salsa20x) =doubleround’(x) +x

Figure 3.Salsa20 hash function operating as

Nevertheless, strictly speaking, since all the core? Stream cipher

definitions operate on a sequence of 4B words, the _ _
input x as well as the result needs to be transformed © créate 64 bytes of the input to the hash functio
using little endian notation (btw note that the sign ~ the 16 or 32Bkey k, the 8Bnonce(number once-

in the above equation is the sum mé@abplied on & Unique message identifier) and thed®@Bintern are
aword-by-word basis). The complete and €xPanded with 16 bytes of constants:

unambiguous specification of the computational flow
for calculation of Salsa2Qx) begins with
transformation of the 64 bytes into 16 words:

(To, 1, Uy, [3) = (0x61707865, 0x3120646E,
0x79622D36, 0x6B278)

(To, (g, [y, [13) = (0x61707865, 0x3320646E,
¥ =x(3...0) 0x79622D32, 02608574)
x=x(7..4

() which are ASCII encoded strings “expand 16-byte
key” and “expand 32-byte key”. If the key is 16Rth
hash valuén is computed usingl; constants with the
key repeated twice in the input:

xi5 = X(63...60)

then states the application of ten double rounds:

(Yo, V1, ... y1s) = doubleround(xo, xs, .. X5) h=Salsa2Q-o, K L1, v, N, Uz k Us)

In a case when the key is 32B long it is split into
halvesk = (k., ky) and supplemented withi;
constants:

and ends with the inverse transformation of thealtes
into 64 bytes which make up the final hash value:

Salsa20x) = (littleendian™(yo + xo),

littleendian®(yz + x1), h=Salsa2Q o, ki, [J1,V, n, [, ky, [3)

Figure 4 visualizes mapping of the encryption input
onto the state matrix of the hash function fordhse

of 32B key. It can be seen that the constant wards
placed on the diagonal of the matrix with the two
As mentioned in the introduction, the Salsa20nonce words located in its upper half and the two
encryption scheme is a hash function operating incounter words in the lower; the key words are
a counter mode where the hash result is XOR’edncluded in the both halves.

littleendian™(yis + x5))

2.2. The Salsa20 encryption function

123

Sugier Jarostaw
Low-cost hardware implementations of Salsa20 streigmer in programmable devices

clock cycle but for contemporary ciphers with many

G kKo ki k rounds of complicated processing they usually
ks 00 Vo Wi demand very large (or even huge) amounts of
N N o Ky resources. On the other hand, the iterative
ks ks ki o organizations need to implement in silicon just one

round or even a part of it (e.g. one fourth in cake
Figure 4.Cipher parameters as the 16 words loaded a single Salsa20 quarterround) so the size of the
to the hash function (case of a 32B key shown) design becomes reduced to a small fraction but the
speed of the processing is almost equally decreased
Since the counten (which is incremented for each In this paper, analogously to our previous work [7]
block of the generated cipher) is 64b long, the[g], we will examine implementations of the Salsa20
maximum length of the encoded stream is limited toencryption function for the three fundamental types
2% 64B blocks or 2 bytes €1 billion TB). As of architectures that are introduced in sectio2s-3.
mentioned before, the Salsa20 decryption functior3.4. Before their presentation, in section 3.1 vié w
would have exactly the same structure as the one idiscuss some basic characteristics of the selected
Figure 3 but with 64B ciphertext block entering the hardware platforms.
input and the same size plaintext leaving the dutpu
3.1. Specifics of FPGA implementation

3. Implementing the cipher in configurable Xilinx, Inc. is the inventor of Field Programmable

hardware Gate Array (FPGA) devices and still one of the most
Any round-based cipher can be efficiently successful suppliers of these circuits worldwidéel
implemented in software using an iterative schemdn [8], it was decided to choose two popular-grade
where operations of the single round are coded oncgevice families from this manufacturer for case
and then applied to the state variables repeaiadly studies included in this work: an older, now more
a loop as many times as required. Parallel exatutioarchetypal, Spartan-3 [9] and a newer Spartan-p [10
of multiple program threads which is viable in In this point we will concisely discuss the basic
contemporary multi-core processors can be utilizedaspects of these two architectures that affect
to speed-up execution of the round provided thsat it efficiency of cipher implementation, in both sizeda
processing can be separated into multiplespeed characteristics of the resultant hardware.

independent tasks (in Salsa20 the quarterround

transformations are ideally suited to such Spartan-3:
a parallelization). 11— LuTa
When transferring the algorithm to hardware the Al4:1]

designer is facing a larger diversity of feasible

options. In general, the iterative loop can be Spartan-6:

completely unrolled with all the rounds replicaiad
hardware as a cascade of modules or it can be
unrolled in part (e.g. one fourth of the rounds
replicated in hardware with the state signals being
passed through four times). Another possibilities
comes up if the loop is not unrolled: just one
hardware module can be implemented in hardware

and its operation on the set of state signals igsgyre 5.Configurable resources of a single logic
repeated as many times as there are rounds in theyj| of Xilinx Spartan-3 and Spartan-6 devices
cipher, or the processing of the single round can b

divided into multiple execution of a sub-module — gqr 5 simplified structure of the logic cell in theo
again, in the case of Salsa20 these would be thgjjiny families please se@igure 5 In all FPGA
quarterround function — and execution of one roundyeyvices from this manufacturer. so callegok-Up

is accomplished in multiple steps — i.e. in muliipl Tapie (LUT) is the element located in every cell

clock cycles. _ which is provided for generation of any
The choice of architecture type usually depends onygmpinational function. A single LUT is a ROM

specifically defined cost criteria and comes frdte t ape filled with zeroes and ones during configiorat

optimal Dbalance between required speed VSgecording to the function which should be presented
acceptable size of the hardware: organizations withy; 5 output. In case of Spartan-3 devices, thdd.U

completely unrolled loop can finish encoding in one 5, 4-input tables holding 16b each thus they can

124

Journal of Polish Safety and Reliability Associatio
Summer Safety and Reliability Seminafslume 4, Number 1, 2013

generate any function of maximum 4 variables.we will specify the basic speed and size parameters
A function of fever variables still must occupy one the minimum clock period (k) and the maximum
LUT while any wider function will use more of them operating frequencyf{s) as they were estimated by
(5-input function = 32b or 2 LUTSs, 6-input function the post-place & route static timing analysis, the
= 64b or 4 LUTs, etc.). In Spartan-6 architectume, latency expressed in clock cycles and in
turn, every LUT table has the total capacity of 64bnanoseconds, the overall throughput in Gbps
being sufficient for generation of any 6-input calculated for thé,,, Size of the design expressed in
Boolean function but, alternatively, can be the number of occupied slices, LUTs and registers,
configured for generation of any two 5-input and a synthetic performance measure which is
functions provided that they share the same set o€ommonly used for estimation of speed vs. size
input variables. efficiency — Mbps of the throughput per one
A 6-input / Z5-input LUT generator found in occupied slice.

Spartan-6 may present a significant advantage in

implementation of wide Boolean functions (i.e. 3.2. The combinational architecture

functions of many variables) when compared to 4-
input LUTs of Spartan-3. As we have shown in [7]-
[8], this can be especially beneficial e.g. in aecaf
the AES substitution boxes which create an
important and substantial part in definition of the
cipher. While a Serpent S-Box is a 4-input function

which fits efficiently in Spartan-3 LUT elements, on the outputs of the last round. In-between, the

AES S-Boxes have 8 inputs and their mapping ind . N binational function that
Spartan-3 is problematic. In such case switching to esign operates as a combinational function tha

Spartan-6 gives noticeable improvements that are nd P> 512 input bits _ (key, nonce, counter and
so much evident when moving Serpent to the neV\FO”StamS) into 512 output bits (hash) thus the
architecture reported maximum frequency of operation is actually
Additionally, in both architectures the signal winic estimated speed of operation of the entire hash

: ; function. In practical applications additional log
goes out of the LUT can be optionally stored in the ; -) ;
flip-flop so virtually every signal generated ineth would be required fo_r XOR'ing the p!amtext W't.hgfth

hash value but this would require so minimal

array can be easily synchronously registered:) .
introducing some amount of registers into the FPGAresources that it would not affect the estimatezbep

project, like it is e.g. in pipelined designs, ubua of operation and also the increase in resource

can be accomplished at very little additional cost. g(%nsgmption would bi. nggbligiblet._ th T
In both Spartan families two logic cells represdnte € design was specified by porting the Spec '

in Figure 5make upa slice — an elementary unit of [2] to the VHDL'Ianguage using strict RTL style:
FPGA organization which includes two LUTs and 2 there were no Instances of _Ilprary eleme_nts, no
(Spartan-3) or 4 (Spartan-6) flip-flops. Size ofyan sequential (_procedural) descriptions were inserted
design after its implementation in the array isaligu and no explicit references to any specific hardware
expressed as a number of occupied slices Witr@ttributes were made so that the same code could be

numbers of utiized LUTs and registers synthesized for entirely different device familyee

communicated as the two supplementary measureé,c.’rm a different manufacturer. Definition of all

Moreover, it should be noted that in real desighs a |r][tder|nal' signeils ;Nas badse(tjtr(])n bth[te IEEfEthstandgrd
resources (all LUTs and all registers) are neverstd_logic_vector type and at the bottom of thegfesi

actually utilized insideeveryoccupied slice; in some h|_era_rchy there was only one kind of entity — Flmeo
with implementation of the quarterround functias. |

of them the registers adjacent to occupied LUTS

remain idle or — conversely — only a register jgInternal structure followed closely data paths dat

utilized and the related LUT remains unused. be identified inFigure 1 and, due to very simple
basic operations of this cipher, it did not requirg

In the following discussion we will present) g
parameters of the designs after their implememtatio sub-modules: both the XOR and the addition of the

in XC352000 (Spartan-3) and XC6SLX75 (Spartan-32b vectors were done with the IEEE.std_logic_1164
6) devices. In all cases the VHDL specification Wasztand%rd q operators Iwhbe?reas Jhe ro'tatlcr)]ns 'Wer:—:‘
synthesized by the XST synthesis tool in Xilinx ISE 9€scribed as a simple bit reordering In the signa

14.4 design suite and then implemented for thergive vectors and expressed Just as concurrent S|gr_1al
two devices. The implementation was fully assignments that do not require any logic at all (i

automatic, without any hand-made optimizationshardware implementations, as opposed to software

neither in placement nor in routing. For every dgesi realizations, rotations are done exclusively intirg,
and actually do not require any resources).

In this organization hardware structure closely
reflects flow of the data that is being encoded.2al
rounds of the cipher are implemented as separate
hardware modules that create a continuous
combinational path from registers on the inputhaf t
first round of the Salsa20 hash function to registe

125

Sugier Jarostaw
Low-cost hardware implementations of Salsa20 streigmer in programmable devices

After constructing both kinds of the rounds by gsin successful architectures which are described in the
4 direct instances of the quarterround entities, th following two sections.

double round entity was defined and — finally — the

10-element cascade of such entities was constructe8.3. The pipelined architectures

with a single for...generate statement in a concise h | id ¢ pinelini . introd
and clear manner. The general idea of pipelining is to introduce

During implementation in the Xilinx ISE design uit €9iSters evenly spaced along the combinationdl pat
it turned out that the tools are unable to autoratii SC that in synchronized operation multiple blocks o
route this design on neither platform (Spartan-8 no 9ata are processed simultaneously one by another
Spartan-6) due to size and complexity of signal'ns'de the pipeline stages at the same time during

connections. The synthesis could be accomplishe§VerY clock cycle. In the above defined
successfully without any significant messages justcomblnatlc_)nal archltgcture of 'the_ Salsa?O cipher th
like the translate, map and placement steps, teut thnatural points of placing the pipeline registers e
router tool, after substantially longer running gim Signals that cross boundaries between the cipher
quit with a message about a very dense andqunds; this transforms'each round into a separate
congested design. pipeline stage. In technical terms such organimatio
can be interpreted as a complete outer loop ungplli

and leads to 20 pipeline stages — a valid hastevalu
appears 20 clock cycles after loading the datheat t
inputs. Although such modification does not improve

Table 1.Size of the combinational architecture vs.
combinational implementations of other ciphers [8]

Spartan-3 Spartan-6 the latency (the time delay measured from loading
Salsa20 AES| Salsa20 Serpent the data to reading the result) which can be dgtual

Slices] 14838 17428 5079 5 243 somewhat longer compared to the combinational
LUTs| 28670 34566 19040 16888 propagation due to non-zero flip-flop switching &m

and non-ideal pipelining, the overall throughput of

T | this_ situati ble 1sh the si the circuit (amount of data processed in unit time)
0 analyse this situatioriable 1shows the size rises substantially thanks to the simultaneous

parameters for this architecture as they were tedor_ rocessing of multiple data blocks in the pipeline
after the placement step and compares them wit tages
equivalent combinational architectures of two OtherAdding' large amount of registers (512 x number of

yvell-known c_|phers that were successfull_y ipeline stages) may seem to be a considerable
implemented with the same software tools and us'ndjncrease in resource usage but in case of FPGA

the same design methodology in [8]: AES [6] in architectures this increase is easily absorbedhby t

XC352000 and Serpent [1] in XC6SLX7S. AIthough array. As discussed in section 3.1, in these device

it can be seen that the size of the Salsa20 desigQ flip-flop is included in every logic cell right ¢he

expressed in terms of occupied slices and I‘UToutput of the combinational configurable element

elements is cqmparable, and actua!ly SomevvhaELUT) so the only actual difference is that now gom
lower, than size of successfully implemented

_ of them are used for registering the LUT signallevhi

combinational organizations of AES and Serpent, Nin combinational organization they were left unused

this bf:ast? c<|)mpltexn31(andd_ s_(ljzed th the SalsafoThis usually does not affect the total number of
combinational network, undivided Into- a separa eoccupied logic cells but just improves their

cipher and key paths, turned out to be a proh#itiv utilization

factor for the router tool. Co_mment.ing on procegsin In a case study of this paper we have tested two
complexity of these three ciphers it should be diote variants of this architecture: pipelining the dptah

that the AES consists of 10 rounds working on 128bWith 10 stages, i.e. with stage boundaries at 3@lsa

of data in cipher path and 128b of data in key : : :
: . ouble rounds, and with 20 stages, i.e. with stage
expansion path (256b in total) and Serpent has 3 oundaries at every column and row round. The

rounds working also on 128b in cipher plus 128D inoq 15 for poth families of FPGA devices can be
key paths, whereas Salsa20 transforms a Singl?ound inTable 2

uniform 512b state vector in 20 rounds.

This fact is an interesting observation about
complexity of the Salsa20 hash function.
Nevertheless, although the combinational
architecture could not be automatically implemented

First of all it should be noted that after transfiorg

the combinational organization (which could not be
implemented) into a pipelined one the

implementation completed succesfuly so the table

) o . N) lists also performance parameters which were
in hardware it is included in this discussion begau P P

it mad arti int Tor devel ¢ of h derived from minimal clock frequency estimated by
't made a starling point for development ot anothely, o giatic timing analysis of the completely routed

126

Journal of Polish Safety and Reliability Associatio
Summer Safety and Reliability Seminafslume 4, Number 1, 2013

design. At first it may seem to be a perplexingsince they will always be doubled for the P.x20
behaviour that enlarging an already huge design byariant and therefore it will always prevail;, the
adding a considerable amount of flip-flops madedifference is further modified by theyland fax —
possible its implementation, but this actually widened in Spartan-3 and narrowed in Spartan-6.
confirms that the routing of the previous architeet Since there is no significant differences in design
was impossible due to very long combinational pathssizes, the Mbps per slice value varies in the same
that run across all the cipher rounds. After gplitt way as the raw throughput.

these paths into a number of shorter segments the

task of the router was much simpler hence the tooB.4. The iterative architectures

was able to complete it successfully. , _ _ _ _ , _
P y The iterative architectures investigated in thisrkwo

were based on one round taken from both versions of
the pipelined organizations presented in the previo
section, so we will examine two iterative variants:
Spartan-3 Spartan-6 1.x10 and 1.x20.
P.x10 P.x20| P.x10 P.x20 The 1.x10 needed 10 clock cycles to complete the
min T [ns]| 580 24.0] 227 152 processing of a single _block before t_he next ome ca
foMHZ] | 172 416 440 659 be loaded but it haql implemented in hardware the
whole double round, i.e. a column round followed by
Latency [T 10200 10 20 he row round, each comprising four instances of
Latency [ns] 579.9 480.6| 227.5 303.4| guarterround entites. Such a module was
Throughput [Gbps] 88 213 225 337 supplemented with a necessary multiplexing logic
Mbps/ Slice| 0.77 1.74 47 6.36 (loading the data in — looping back — loading thé&éd

Occupied Sliced 11 539 12 254| 4765 5307 out) and a simple controller responsible for caumti
Slice LUTs| 21 827 21 235| 17 268 21 140 loop repetitions (round number) and supervising the

Slice Registers 5888 11 008 5888 11 008 ‘r‘pultlplexe"rs. The controller_lncluded just a single
idle/busy” register and a rudimentary round counte

_ , no more complicated extra logic was necessary.
Secondly, the listed size parameters can be comparesince | the ten repetitions of the double rours a

to that reported ifTable 1to see that adding the flip- strictly identical, such a simple scheme was
flops, although in large quantity, did not prodec® ¢ fficient. '

significant increase in the number of occupiedeslic Tha | x20 variant computed one block of data in 20

and even in case of Spartan-3 device their numbeg o y cycles and in general it contained the same
has actually decreased by nearly 20%. This

: (iimple control logic as the 1.x10, but here the 20
observation proves that the regular, round-bas_e erations were not exactly the same: the even-

structure of Salsa20 transformations, like it was i umbered rounds (when numbered from O to 19)
case of the AES and Serpent ciphers, is very welshg,q apply the column round transformation while
suited for the pipelining and the additional regist he odd-numbered ones — the row round one. In both
needed for this purpose can be located in the FPGRgses the needed hardware consisted of just four

slices without incurring any increase in the total 5 arterround modules and they were replicated in

design size (or even, as in the considered case ‘ﬁardware only once but also two blocks of extra
Spartan-3, it can help to better utilize the slices

, multiplexing of inputs and outputs were necessary t
Finally, the presented parameters allow evaluation gitterentiate permutations of the state words ia th
the two pipeline variants: with 10 and with 20 €89 oyen and odd iterations.

It would be natural to expect that twice shorter parameters of the two variants obtained after their
pipeline stages in P.x20 organization should givejnniementation in the selected devices are included
roughly twice shorter clock period and this is the i, Tapje 3 One can see that the size difference is far
case for Spartan-3 architecture: the decreas®is fr fqm 1:2 ratio as one could expect: number of slice

58 10 24ns, so it is even greater than expected, | y10 architecture is greater by only 5-10% diesp
(evidently the implementation of the P.x10 variant e tact that it includes implementation of twomds

again posed some additional - difficulties). 5 st one in 1.x20. This shows that the overhead
Nevertheless the decrease is not so big on Spartan;nyaquced with the extra multiplexing on the input
platform: 22.7 vs. 15.2ns is the fall by one thordy. 5nq output counterweights the expected savings. The
Consequently, the absolute values of the latencye formance comparison is again different on the
parameter are in favour of P.x20 on Spartan-3y,, hardware platforms. In the older architectufe o
platform and of P.x10 on Spartan-6. There is ndsuc Spartan-3 the reduction in Ix.2Q,Tis almost to the

discrepancy when looking at the throughput Valuesexpected 50% so the overall throughput and Mbps

Table 2.Parameters of the two versions of the
pipelined designs: with 10 and 20 pipeline stages

127

Sugier Jarostaw
Low-cost hardware implementations of Salsa20 streigmer in programmable devices

per slice are practically the same. In Spartanrb, o

the other hand, we see not so large decrease and Also available at

therefore the performance is in favour of the 1x.10

variant.

Table 3.Two versions of the iterative architecture:
with 10 and 20 repetitions

Spartan-3 Spartan-6
I.x10 1.x20| 1.x10 1.x20
min Tgy [NS] 51.7 24.7(208 12.4
fna{MHZ] 194 404 480 805
Latency [Tuu] 10 20 10 20
Latency [ns] 516.8 494.6| 208.3 248.5
Throughput [Gbps] 099 1.04, 246 2.06
Mbps / Slicej] 0.49 0.56| 3.00 2.60
Occupied Slices 2036 1858 818 791
Slice LUTs| 3374 3250[2955 2611
Slice Registers 1286 1294| 1317 1296

4. Conclusions

Despite fully automatic implementation and very
simple specification in the VHDL language, the
proposed pipelined architectures of Salsa20 ciphe

[3]

[4]

[5]

[6]

[7]

Is

can reach a throughput levels over 20 Gbps in older
Spartan-3 and over 30 Gbps in newer Spartan-6
devices. FPGA implementations described in [4]-[5]8]
and [11] are not directly comparable but have

significantly lower speed (e.g. 1.2 Gbps in Spafan

device in [4]) and also lower throughput to area

ratios (0.74 Mbps/slice in [4] and 0.2 Mbps/slice i
a highly iterative architecture proposed in [11]).
Comparing the two variants of pipelined and iteeati

[9]

architectures one can try to recommend the optimal
organization with the good balance between spged]

and size. In case of the P.x10 and P.x20 archiestu

the latter seems to be a better option: although it
latency is bigger on Spartan-6 platform, thgi]

significant increase in both and
Mbps/slice ratio
compensation. In case of the iterative architesture
size reduction in 1.x20 is not as large as expeatet]

the 1.x10 turns out to be a better overall perfarme

especially in the newer Spartan-6 device.

throughput

References
[1] Anderson, R., Biham, E. & Knudsen, L. (1998).

is a more than an adequate

Serpent: A Proposal for the Advanced Encryption

Standard. Proc. First Advanced Encryption
Standard (AES) Candidate ConfVentura,

California, http://www.cl.cam.ac.uk/~rjal4/
serpent.html (accessed April 2012).

Bernstein, D.J.
Cipher.Proc. SKEW - Symmetric Key Encryption

[2]

(2005). The Salsa20 Stream

128

Workshop Aarhus, Danemark, 26-27 May 2005.
http://cr.yp.to/snuffle.html
(accessed April 2013).

Bernstein, D.J. (2008). The Salsa20 family of
stream ciphers.New Stream Cipher Designs
Springer, 84-97.

Gaj, K., Southern, G., & Bachimanchi, R. (2007).
Comparison of hardware performance of selected
Phase 1l eSTREAM candidatdroc. State of the
Art of Stream Ciphers WorkshoSTREAM,
ECRYPT Stream Cipher Project, Report, Vol. 26,
p. 2007.

Good, T., & Benaissa, M. (2007). Hardware
results for selected stream cipher candidates.
Proc. State of the Art of Stream Ciphers
Workshop 191-204.

National Institute of Standards and Technology
(2001). Specification for the ADVANCED
ENCRYPTION STANDARD (AES). Federal
Information Processing Standards Publication
197. http://csrc.nist.gov/publications/PubsFIPS
.html (accessed April 2012).

Sugier, J. (2010). Low-cost hardware
implementation of Serpent cipher in
programmable devicesMonographs of System
Dependability Vol. 3: Technical Approach to
Dependability Publishing House of Wroctaw
University of Technology, 159-172.

Sugier, J. (2012). Implementing AES and Serpent
ciphers in new generation of low-cost FPGA
devices. Advances in Intelligent and Soft
computing Vol. 170: Complex Systems and
Dependability Springer, 273-288.

Xilinx, Inc. (2009).Spartan-3 Family Data Sheet
DS099.PDF, www.xilinx.com (accessed April
2013).

Xilinx, Inc. (2011). Spartan-6 Family Overview
DS160.PDF, www.xilinx.com (accessed April
2013).

Yan, J., & Heys, H.M. (2007). Hardware
implementation of the Salsa20 and Phelix stream
ciphers.Proc. Canadian Conference on Electrical
and Computer Engineering CCECE 200FEE,
1125-1128.

