
Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 4, Number 1, 2013

 121

1. Introduction

A hardware implementation is an important option
for every cipher and numerous realizations using
both mask- (ASIC) and field- programmable gate
arrays (FPGA) silicon devices have been developed
for AES contest candidates or for algorithms that
took part in the ECRYPT project. In this work we
present results obtained after implementation of
different architectures of Salsa20 stream cipher in
popular-grade FPGA devices. While most of the
solutions described in the literature are customized
for specific device architectures and/or operating
environments and they are highly optimized to reach
maximum efficiency either in speed or in size, in this
work we look from different point at the task of
cipher implementation.
The terms “popular-grade” or “low-cost” that we
refer to in the title and in the text are understood as
follows: 1) the programmable devices used for
implementation are chosen from inexpensive,
popular and commonly used line of FPGA chips,
widely available on the market; 2) the design is
described in hardware description language on the
relatively high level of abstraction (no less than at
Register Transfer Level, RTL) and then synthesized
and implemented fully automatically by standard

software provided by the chip manufacturer, without
any special “handmade” optimization, neither in
layout nor routing.
The text is organized as follows. In the next section
we discuss organization of the Salsa20 algorithm as
a hash function and as a stream cipher, then we
introduce the three basic kinds of cipher
implementation in hardware: the combinational, the
pipelined and the iterative one, and finally we
evaluate the results of automatic implementation of
these architectures in the two selected families of
FPGA devices.

2. The Salsa20 cipher

Salsa20 family of stream ciphers [2]-[3] has been
developed by Daniel J. Bernstein from the University
of Illinois at Chicago, USA, in 2005 and submitted to
the eSTREAM project. After passing all phases of
selection unmodified it has been included in the final
portfolio of Profile 1 (software) ciphers along with 4
other proposals.
At its core the Salsa20 cipher is a hash function
which operates in the counter mode as a stream
cipher: the 64B[yte] input consisting of 32B of the
key (or twice repeated 16B key) together with 8B
nonce plus 8B counter and 16 constants bytes is

Sugier Jarosław
Wrocław University of Technology, Wrocław, Poland

Low-cost hardware implementations of Salsa20 stream cipher in
programmable devices

Keywords

FPGA, stream cipher, hardware implementation, pipelining, iterative architecture

Abstract

Salsa20 is a 256-bit stream cipher that has been proposed to eSTREAM, ECRYPT Stream Cipher Project, and
is considered to be one of the most secure and relatively fastest proposals. This paper describes hardware
implementation of various architectures of this cipher in popular Field Programmable Gate Arrays (FPGA).
The implemented architectures are based on the loop-unrolled data flow organization and after pipelining they
can reach the throughput in the range of 20 – 30 Gbps even after fully automatic implementation in popular
low-cost families of Spartan-3 and Spartan-6 from Xilinx. More resource-limited iterative architectures achieve
speed of 1 – 2 Gbps. The results that are included in this work present potential of the algorithm when it is
implemented in a specific FPGA environment and provide some information for evaluation of cipher
effectiveness in contemporary popular programmable devices.

Sugier Jarosław
Low-cost hardware implementations of Salsa20 stream cipher in programmable devices

 122

hashed into 64B result which is then XOR’ed with
the plaintext. State of the cipher is also 64B wide and
is represented as a series of 4B state words. During
decryption the same hash result is XOR’ed with the
ciphertext stream to produce plaintext. There is no
feedback of the data stream to the hash stream.

2.1. The Salsa20 hash function

The Salsa20 hash function consists in application of
20 rounds which are executed over the state q = (q0,
q0, … q15), where each qi represents a single 32b[it]
state word. Different permutations of the state words
are used as input to even- and odd-numbered rounds
but otherwise the in-round processing is identical so
the whole organization is very uniform. Moreover, in
the entire algorithm only the following three basic
transformations are used, all operating on the entire
32b words:
- bitwise Exclusive-Or (XOR) of the two words,

denoted as ⊕;
- sum mod 232 of the two words, denoted as +

(since there is no other kind of addition used here
there is no risk of confusion);

- rotation to the left by the given (constant) number
of bits, denoted as <<.

In contrast to the contemporary symmetric block
ciphers, in Salsa20 there is no key pre-processing
path running in parallel with data (cipher) path which
would compute a separate key for each round; the
user supplied external key is embedded into the input
64 bytes producing directly half of the 16 state words
and then the 512b vector is processed in its entirety.
The elementary organizational unit of the cipher is
a quarterround function which transforms a group of
four state words: quarterrorund(w0, w1, w2, w3) =
(w0’, w1’, w2’, w3’) such that

 w1’ = w1 ⊕ ((w0 + w3) << 7)
 w2’ = w2 ⊕ ((w1’ + w0) << 9)
 w3’ = w3 ⊕ ((w2’ + w1’) << 13)
 w0’ = w0 ⊕ ((w3’ + w2’) << 18)

The above equations are given in specific order in
which they can be sequentially executed modifying
wi words in place: first, w1 is replaced with the new
value w1’ which is computed from the current w0 and
w3 words, then w2 is replaced with the new value
computed from w1’ and w0, then w3 is replaced with
the value computed from w2’ and w1’, and finally w0
is replaced with the value computed from w3’ and
w2’. In this way the quarterround can be
implemented in software as a chain of four
transformations executed one after another without
any temporary registers for intermediate storage of

wi’ values. The flow of data which results from the
above equations is graphically visualized in Figure 1.

w0

w1

<<7

<<9

<<13

<<18

w2

w3

w0’

w1’

w2’

w3’

quarterround

- sum mod 232
- ExclusiveOr

<< n - left rotation

Figure 1. Transformations of the state words in the
Salsa20 quarterround function

Four quarterrounds operating in parallel constitute
a single round of the cipher and this can be one of the
two kinds: a row round or a column round. A row
round function is defined as rowround(q) = q’ such
that

 (q0’, q1’, q2’, q3’) = quarterround(q0, q1, q2, q3)

 (q5’, q6’, q7’, q4’) = quarterround(q5, q6, q7, q4)

 (q10’, q11’, q8’, q9’) = quarterround(q10, q11, q8, q9)

 (q15’, q12’, q13’, q14’) =
 quarterround(q15, q12, q13, q14)

whereas a column round function is defined as
columnround (q) = q’ such that

 (q0’, q4’, q8’, q12’) = quarterround(q0, q4, q8, q12)

 (q5’, q9’, q13’, q1’) = quarterround(q5, q9, q13, q1)

 (q10’, q14’, q2’, q6’) =
quarterround(q10, q14, q2, q6)

 (q15’, q3’, q7’, q11’) =
quarterround(q15, q3, q7, q11)

Justification for the round names becomes evident
after the quarterround inputs are marked on the 16
words of the state q visualized as a 4×4 matrix, as it
is done in Figure 2. In both cases the four
quarterround functions are loaded with, respectively,
rows (in a row round) and columns (in a column
round) extracted from the matrix and then rotated:
the k-th row or column (k = 0 … 3) is rotated by k
positions to the left or upwards so that the diagonal
elements are given always as the first quarterround
argument w0.
A column round followed by a row round make up
a so called double round:

 doubleround(q) = rowround(columnround(q))

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 4, Number 1, 2013

 123

q0 q1 q2 q3
 q4 q5 q6 q7
 q8 q9 q10 q11
 q12 q13 q14 q15

q0 q1 q2 q3
 q4 q5 q6 q7
 q8 q9 q10 q11
 q12 q13 q14 q15

Figure 2. Arrangement of the state words at the
inputs to the quarterrounds in a row round (above)
and a column round (below)

Having introduced all the above elementary
components the final hash function can be defined.
In short, to generate the Salsa20 hash value for a 64B
input x, first the double round is applied ten times to
it and then the result is added:

 Salsa20(x) = doubleround10(x) + x

Nevertheless, strictly speaking, since all the core
definitions operate on a sequence of 4B words, the
input x as well as the result needs to be transformed
using little endian notation (btw note that the ‘+’ sign
in the above equation is the sum mod 232 applied on
a word-by-word basis). The complete and
unambiguous specification of the computational flow
for calculation of Salsa20(x) begins with
transformation of the 64 bytes into 16 words:

 x0 = x(3…0)
 x1 = x(7…4)
 …

 x15 = x(63…60)

then states the application of ten double rounds:

 (y0, y1, … y15) = doubleround10(x0, x1, … x15)

and ends with the inverse transformation of the result
into 64 bytes which make up the final hash value:

 Salsa20(x) = (littleendian–1(y0 + x0),
 littleendian–1(y1 + x1),
 …
 littleendian–1(y15 + x15))

2.2. The Salsa20 encryption function

As mentioned in the introduction, the Salsa20
encryption scheme is a hash function operating in
a counter mode where the hash result is XOR’ed

with plaintext to give ciphertext (during encryption)
or with ciphertext to give plaintext (during
decryption). This scheme is outlined in Figure 3. The
simple XOR operation as the final and the only
transformation applied to the plaintext makes
encryption and decryption equally efficient. It also
allows to use the same hash module in both
operations what significantly simplifies either
software or hardware implementations.

Key

Salsa20 hash
function

Nonce

Counter

σ/τ

Plaintext Ciphertext

v n k

p
h

c

Constants
8B

16/32B 8B 16B

64B

Figure 3. Salsa20 hash function operating as
a stream cipher

To create 64 bytes of the input to the hash function,
the 16 or 32B key k, the 8B nonce (number once –
a unique message identifier) and the 8B counter n are
expanded with 16 bytes of constants:

 (�0, �1, �2, �3) = (0x61707865, 0x3120646E,
 0x79622D36, 0x6B206574)
 (�0, �1, �2, �3) = (0x61707865, 0x3320646E,
 0x79622D32, 0x6B206574)

which are ASCII encoded strings “expand 16-byte
key” and “expand 32-byte key”. If the key is 16B the
hash value h is computed using �i constants with the
key repeated twice in the input:

 h = Salsa20(�0, k, �1, v, n, �2, k, �3)

In a case when the key is 32B long it is split into
halves k = (kL, kH) and supplemented with �i
constants:

 h = Salsa20(�0, kL, �1, v, n, �2, kH, �3)

Figure 4 visualizes mapping of the encryption input
onto the state matrix of the hash function for the case
of 32B key. It can be seen that the constant words are
placed on the diagonal of the matrix with the two
nonce words located in its upper half and the two
counter words in the lower; the key words are
included in the both halves.

Sugier Jarosław
Low-cost hardware implementations of Salsa20 stream cipher in programmable devices

 124

 σ0 k0 k1 k2
 k3 σ1 v0 v1
 n0 n1 σ2 k4
 k5 k6 k7 σ3

Figure 4. Cipher parameters as the 16 words loaded
to the hash function (case of a 32B key shown)

Since the counter n (which is incremented for each
block of the generated cipher) is 64b long, the
maximum length of the encoded stream is limited to
264 64B blocks or 270 bytes (≈1 billion TB). As
mentioned before, the Salsa20 decryption function
would have exactly the same structure as the one in
Figure 3 but with 64B ciphertext block entering the
input and the same size plaintext leaving the output.

3. Implementing the cipher in configurable
hardware

Any round-based cipher can be efficiently
implemented in software using an iterative scheme
where operations of the single round are coded once
and then applied to the state variables repeatedly in
a loop as many times as required. Parallel execution
of multiple program threads which is viable in
contemporary multi-core processors can be utilized
to speed-up execution of the round provided that its
processing can be separated into multiple
independent tasks (in Salsa20 the quarterround
transformations are ideally suited to such
a parallelization).
When transferring the algorithm to hardware the
designer is facing a larger diversity of feasible
options. In general, the iterative loop can be
completely unrolled with all the rounds replicated in
hardware as a cascade of modules or it can be
unrolled in part (e.g. one fourth of the rounds
replicated in hardware with the state signals being
passed through four times). Another possibilities
comes up if the loop is not unrolled: just one
hardware module can be implemented in hardware
and its operation on the set of state signals is
repeated as many times as there are rounds in the
cipher, or the processing of the single round can be
divided into multiple execution of a sub-module –
again, in the case of Salsa20 these would be the
quarterround function – and execution of one round
is accomplished in multiple steps – i.e. in multiple
clock cycles.
The choice of architecture type usually depends on
specifically defined cost criteria and comes from the
optimal balance between required speed vs.
acceptable size of the hardware: organizations with
completely unrolled loop can finish encoding in one

clock cycle but for contemporary ciphers with many
rounds of complicated processing they usually
demand very large (or even huge) amounts of
resources. On the other hand, the iterative
organizations need to implement in silicon just one
round or even a part of it (e.g. one fourth in case of
a single Salsa20 quarterround) so the size of the
design becomes reduced to a small fraction but the
speed of the processing is almost equally decreased.
In this paper, analogously to our previous work [7]-
[8], we will examine implementations of the Salsa20
encryption function for the three fundamental types
of architectures that are introduced in sections 3.2 –
3.4. Before their presentation, in section 3.1 we will
discuss some basic characteristics of the selected
hardware platforms.

3.1. Specifics of FPGA implementation

Xilinx, Inc. is the inventor of Field Programmable
Gate Array (FPGA) devices and still one of the most
successful suppliers of these circuits worldwide. Like
in [8], it was decided to choose two popular-grade
device families from this manufacturer for case
studies included in this work: an older, now more
archetypal, Spartan-3 [9] and a newer Spartan-6 [10].
In this point we will concisely discuss the basic
aspects of these two architectures that affect
efficiency of cipher implementation, in both size and
speed characteristics of the resultant hardware.

LUT5

LUT5

A[5:1]

A[6]
LUT6

LUT4 A[4:1]

Spartan-3:

Spartan-6:

Figure 5. Configurable resources of a single logic
cell of Xilinx Spartan-3 and Spartan-6 devices

For a simplified structure of the logic cell in the two
Xilinx families please see Figure 5. In all FPGA
devices from this manufacturer, so called Look-Up
Table (LUT) is the element located in every cell
which is provided for generation of any
combinational function. A single LUT is a ROM
table filled with zeroes and ones during configuration
according to the function which should be presented
at its output. In case of Spartan-3 devices, the LUTs
are 4-input tables holding 16b each thus they can

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 4, Number 1, 2013

 125

generate any function of maximum 4 variables.
A function of fever variables still must occupy one
LUT while any wider function will use more of them
(5-input function = 32b or 2 LUTs, 6-input function
= 64b or 4 LUTs, etc.). In Spartan-6 architecture, in
turn, every LUT table has the total capacity of 64b
being sufficient for generation of any 6-input
Boolean function but, alternatively, can be
configured for generation of any two 5-input
functions provided that they share the same set of
input variables.
A 6-input / 2×5-input LUT generator found in
Spartan-6 may present a significant advantage in
implementation of wide Boolean functions (i.e.
functions of many variables) when compared to 4-
input LUTs of Spartan-3. As we have shown in [7]-
[8], this can be especially beneficial e.g. in a case of
the AES substitution boxes which create an
important and substantial part in definition of the
cipher. While a Serpent S-Box is a 4-input function
which fits efficiently in Spartan-3 LUT elements,
AES S-Boxes have 8 inputs and their mapping in
Spartan-3 is problematic. In such case switching to
Spartan-6 gives noticeable improvements that are not
so much evident when moving Serpent to the new
architecture.
Additionally, in both architectures the signal which
goes out of the LUT can be optionally stored in the
flip-flop so virtually every signal generated in the
array can be easily synchronously registered:
introducing some amount of registers into the FPGA
project, like it is e.g. in pipelined designs, usually
can be accomplished at very little additional cost.
In both Spartan families two logic cells represented
in Figure 5 make up a slice – an elementary unit of
FPGA organization which includes two LUTs and 2
(Spartan-3) or 4 (Spartan-6) flip-flops. Size of any
design after its implementation in the array is usually
expressed as a number of occupied slices with
numbers of utilized LUTs and registers
communicated as the two supplementary measures.
Moreover, it should be noted that in real designs all
resources (all LUTs and all registers) are never
actually utilized inside every occupied slice; in some
of them the registers adjacent to occupied LUTs
remain idle or – conversely – only a register is
utilized and the related LUT remains unused.
In the following discussion we will present
parameters of the designs after their implementation
in XC3S2000 (Spartan-3) and XC6SLX75 (Spartan-
6) devices. In all cases the VHDL specification was
synthesized by the XST synthesis tool in Xilinx ISE
14.4 design suite and then implemented for the given
two devices. The implementation was fully
automatic, without any hand-made optimizations
neither in placement nor in routing. For every design

we will specify the basic speed and size parameters:
the minimum clock period (Tclk) and the maximum
operating frequency (fmax) as they were estimated by
the post-place & route static timing analysis, the
latency expressed in clock cycles and in
nanoseconds, the overall throughput in Gbps
calculated for the fmax, size of the design expressed in
the number of occupied slices, LUTs and registers,
and a synthetic performance measure which is
commonly used for estimation of speed vs. size
efficiency – Mbps of the throughput per one
occupied slice.

3.2. The combinational architecture

In this organization hardware structure closely
reflects flow of the data that is being encoded. All 20
rounds of the cipher are implemented as separate
hardware modules that create a continuous
combinational path from registers on the input of the
first round of the Salsa20 hash function to registers
on the outputs of the last round. In-between, the
design operates as a combinational function that
maps 512 input bits (key, nonce, counter and
constants) into 512 output bits (hash) thus the
reported maximum frequency of operation is actually
estimated speed of operation of the entire hash
function. In practical applications additional logic
would be required for XOR’ing the plaintext with the
hash value but this would require so minimal
resources that it would not affect the estimated speed
of operation and also the increase in resource
consumption would be negligible.
The design was specified by porting the specification
[2] to the VHDL language using strict RTL style:
there were no instances of library elements, no
sequential (procedural) descriptions were inserted
and no explicit references to any specific hardware
attributes were made so that the same code could be
synthesized for entirely different device family, even
form a different manufacturer. Definition of all
internal signals was based on the IEEE standard
std_logic_vector type and at the bottom of the design
hierarchy there was only one kind of entity – the one
with implementation of the quarterround function. Its
internal structure followed closely data paths that can
be identified in Figure 1 and, due to very simple
basic operations of this cipher, it did not require any
sub-modules: both the XOR and the addition of the
32b vectors were done with the IEEE.std_logic_1164
standard operators whereas the rotations were
described as a simple bit reordering in the signal
vectors and expressed just as concurrent signal
assignments that do not require any logic at all (in
hardware implementations, as opposed to software
realizations, rotations are done exclusively in routing
and actually do not require any resources).

Sugier Jarosław
Low-cost hardware implementations of Salsa20 stream cipher in programmable devices

 126

After constructing both kinds of the rounds by using
4 direct instances of the quarterround entities, the
double round entity was defined and – finally – the
10-element cascade of such entities was constructed
with a single for…generate statement in a concise
and clear manner.
During implementation in the Xilinx ISE design suite
it turned out that the tools are unable to automatically
route this design on neither platform (Spartan-3 nor
Spartan-6) due to size and complexity of signal
connections. The synthesis could be accomplished
successfully without any significant messages just
like the translate, map and placement steps, but the
router tool, after substantially longer running time,
quit with a message about a very dense and
congested design.

Table 1. Size of the combinational architecture vs.
combinational implementations of other ciphers [8]

 Spartan-3 Spartan-6

 Salsa20 AES Salsa20 Serpent

Slices 14 838 17 428 5 079 5 243

LUTs 28 670 34 566 19 040 16 888

To analyse this situation, Table 1 shows the size
parameters for this architecture as they were reported
after the placement step and compares them with
equivalent combinational architectures of two other
well-known ciphers that were successfully
implemented with the same software tools and using
the same design methodology in [8]: AES [6] in
XC3S2000 and Serpent [1] in XC6SLX75. Although
it can be seen that the size of the Salsa20 design
expressed in terms of occupied slices and LUT
elements is comparable, and actually somewhat
lower, than size of successfully implemented
combinational organizations of AES and Serpent, in
this case complexity and size of the Salsa20
combinational network, undivided into a separate
cipher and key paths, turned out to be a prohibitive
factor for the router tool. Commenting on processing
complexity of these three ciphers it should be noted
that the AES consists of 10 rounds working on 128b
of data in cipher path and 128b of data in key
expansion path (256b in total) and Serpent has 32
rounds working also on 128b in cipher plus 128b in
key paths, whereas Salsa20 transforms a single
uniform 512b state vector in 20 rounds.
This fact is an interesting observation about
complexity of the Salsa20 hash function.
Nevertheless, although the combinational
architecture could not be automatically implemented
in hardware it is included in this discussion because
it made a starting point for development of another

successful architectures which are described in the
following two sections.

3.3. The pipelined architectures

The general idea of pipelining is to introduce
registers evenly spaced along the combinational path
so that in synchronized operation multiple blocks of
data are processed simultaneously one by another
inside the pipeline stages at the same time during
every clock cycle. In the above defined
combinational architecture of the Salsa20 cipher the
natural points of placing the pipeline registers are the
signals that cross boundaries between the cipher
rounds; this transforms each round into a separate
pipeline stage. In technical terms such organization
can be interpreted as a complete outer loop unrolling
and leads to 20 pipeline stages – a valid hash value
appears 20 clock cycles after loading the data at the
inputs. Although such modification does not improve
the latency (the time delay measured from loading
the data to reading the result) which can be actually
somewhat longer compared to the combinational
propagation due to non-zero flip-flop switching time
and non-ideal pipelining, the overall throughput of
the circuit (amount of data processed in unit time)
rises substantially thanks to the simultaneous
processing of multiple data blocks in the pipeline
stages.
Adding large amount of registers (512 × number of
pipeline stages) may seem to be a considerable
increase in resource usage but in case of FPGA
architectures this increase is easily absorbed by the
array. As discussed in section 3.1, in these devices
a flip-flop is included in every logic cell right at the
output of the combinational configurable element
(LUT) so the only actual difference is that now some
of them are used for registering the LUT signal while
in combinational organization they were left unused.
This usually does not affect the total number of
occupied logic cells but just improves their
utilization.
In a case study of this paper we have tested two
variants of this architecture: pipelining the data path
with 10 stages, i.e. with stage boundaries at Salsa20
double rounds, and with 20 stages, i.e. with stage
boundaries at every column and row round. The
results for both families of FPGA devices can be
found in Table 2.
First of all it should be noted that after transforming
the combinational organization (which could not be
implemented) into a pipelined one the
implementation completed succesfuly so the table
lists also performance parameters which were
derived from minimal clock frequency estimated by
the static timing analysis of the completely routed

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 4, Number 1, 2013

 127

design. At first it may seem to be a perplexing
behaviour that enlarging an already huge design by
adding a considerable amount of flip-flops made
possible its implementation, but this actually
confirms that the routing of the previous architecture
was impossible due to very long combinational paths
that run across all the cipher rounds. After splitting
these paths into a number of shorter segments the
task of the router was much simpler hence the tool
was able to complete it successfully.

Table 2. Parameters of the two versions of the
pipelined designs: with 10 and 20 pipeline stages

 Spartan-3 Spartan-6

 P.x10 P.x20 P.x10 P.x20

min Tclk [ns] 58.0 24.0 22.7 15.2

fmax[MHz] 17.2 41.6 44.0 65.9

Latency [Tclk] 10 20 10 20

Latency [ns] 579.9 480.6 227.5 303.4

Throughput [Gbps] 8.8 21.3 22.5 33.7

Mbps / Slice 0.77 1.74 4.7 6.36

Occupied Slices 11 539 12 254 4 765 5 307
Slice LUTs 21 827 21 235 17 268 21 140

Slice Registers 5 888 11 008 5 888 11 008

Secondly, the listed size parameters can be compared
to that reported in Table 1 to see that adding the flip-
flops, although in large quantity, did not produce any
significant increase in the number of occupied slices
and even in case of Spartan-3 device their number
has actually decreased by nearly 20%. This
observation proves that the regular, round-based
structure of Salsa20 transformations, like it was in
case of the AES and Serpent ciphers, is very well
suited for the pipelining and the additional registers
needed for this purpose can be located in the FPGA
slices without incurring any increase in the total
design size (or even, as in the considered case of
Spartan-3, it can help to better utilize the slices).
Finally, the presented parameters allow evaluation of
the two pipeline variants: with 10 and with 20 stages.
It would be natural to expect that twice shorter
pipeline stages in P.x20 organization should give
roughly twice shorter clock period and this is the
case for Spartan-3 architecture: the decrease is from
58 to 24ns, so it is even greater than expected
(evidently the implementation of the P.x10 variant
again posed some additional difficulties).
Nevertheless the decrease is not so big on Spartan-6
platform: 22.7 vs. 15.2ns is the fall by one third only.
Consequently, the absolute values of the latency
parameter are in favour of P.x20 on Spartan-3
platform and of P.x10 on Spartan-6. There is no such
discrepancy when looking at the throughput values

since they will always be doubled for the P.x20
variant and therefore it will always prevail; the
difference is further modified by the Tclk and fmax –
widened in Spartan-3 and narrowed in Spartan-6.
Since there is no significant differences in design
sizes, the Mbps per slice value varies in the same
way as the raw throughput.

3.4. The iterative architectures

The iterative architectures investigated in this work
were based on one round taken from both versions of
the pipelined organizations presented in the previous
section, so we will examine two iterative variants:
I.x10 and I.x20.
The I.x10 needed 10 clock cycles to complete the
processing of a single block before the next one can
be loaded but it had implemented in hardware the
whole double round, i.e. a column round followed by
the row round, each comprising four instances of
quarterround entities. Such a module was
supplemented with a necessary multiplexing logic
(loading the data in – looping back – loading the data
out) and a simple controller responsible for counting
loop repetitions (round number) and supervising the
multiplexers. The controller included just a single
“idle/busy” register and a rudimentary round counter;
no more complicated extra logic was necessary.
Since all the ten repetitions of the double round are
strictly identical, such a simple scheme was
sufficient.
The I.x20 variant computed one block of data in 20
clock cycles and in general it contained the same
simple control logic as the I.x10, but here the 20
iterations were not exactly the same: the even-
numbered rounds (when numbered from 0 to 19)
should apply the column round transformation while
the odd-numbered ones – the row round one. In both
cases the needed hardware consisted of just four
quarterround modules and they were replicated in
hardware only once but also two blocks of extra
multiplexing of inputs and outputs were necessary to
differentiate permutations of the state words in the
even and odd iterations.
Parameters of the two variants obtained after their
implementation in the selected devices are included
in Table 3. One can see that the size difference is far
from 1:2 ratio as one could expect: number of slices
in I.x10 architecture is greater by only 5-10% despite
the fact that it includes implementation of two rounds
vs. just one in I.x20. This shows that the overhead
introduced with the extra multiplexing on the input
and output counterweights the expected savings. The
performance comparison is again different on the
two hardware platforms. In the older architecture of
Spartan-3 the reduction in Ix.20 Tclk is almost to the
expected 50% so the overall throughput and Mbps

Sugier Jarosław
Low-cost hardware implementations of Salsa20 stream cipher in programmable devices

 128

per slice are practically the same. In Spartan-6, on
the other hand, we see not so large decrease and
therefore the performance is in favour of the Ix.10
variant.

Table 3. Two versions of the iterative architecture:
with 10 and 20 repetitions

 Spartan-3 Spartan-6

 I.x10 I.x20 I.x10 I.x20

min Tclk [ns] 51.7 24.7 20.8 12.4

fmax[MHz] 19.4 40.4 48.0 80.5

Latency [Tclk] 10 20 10 20

Latency [ns] 516.8 494.6 208.3 248.5

Throughput [Gbps] 0.99 1.04 2.46 2.06

Mbps / Slice 0.49 0.56 3.00 2.60

Occupied Slices 2 036 1 858 818 791
Slice LUTs 3 374 3 250 2 955 2 611

Slice Registers 1 286 1 294 1 317 1 296

4. Conclusions

Despite fully automatic implementation and very
simple specification in the VHDL language, the
proposed pipelined architectures of Salsa20 ciphers
can reach a throughput levels over 20 Gbps in older
Spartan-3 and over 30 Gbps in newer Spartan-6
devices. FPGA implementations described in [4]-[5]
and [11] are not directly comparable but have
significantly lower speed (e.g. 1.2 Gbps in Spartan-3
device in [4]) and also lower throughput to area
ratios (0.74 Mbps/slice in [4] and 0.2 Mbps/slice in
a highly iterative architecture proposed in [11]).
Comparing the two variants of pipelined and iterative
architectures one can try to recommend the optimal
organization with the good balance between speed
and size. In case of the P.x10 and P.x20 architectures
the latter seems to be a better option: although its
latency is bigger on Spartan-6 platform, the
significant increase in both throughput and
Mbps/slice ratio is a more than an adequate
compensation. In case of the iterative architectures,
size reduction in I.x20 is not as large as expected and
the I.x10 turns out to be a better overall performer,
especially in the newer Spartan-6 device.

References

[1] Anderson, R., Biham, E. & Knudsen, L. (1998).
Serpent: A Proposal for the Advanced Encryption
Standard. Proc. First Advanced Encryption
Standard (AES) Candidate Conf. Ventura,
California, http://www.cl.cam.ac.uk/~rja14/
serpent.html (accessed April 2012).

[2] Bernstein, D.J. (2005). The Salsa20 Stream
Cipher. Proc. SKEW - Symmetric Key Encryption

Workshop, Aarhus, Danemark, 26-27 May 2005.
Also available at http://cr.yp.to/snuffle.html
(accessed April 2013).

[3] Bernstein, D.J. (2008). The Salsa20 family of
stream ciphers. New Stream Cipher Designs.
Springer, 84-97.

[4] Gaj, K., Southern, G., & Bachimanchi, R. (2007).
Comparison of hardware performance of selected
Phase II eSTREAM candidates. Proc. State of the
Art of Stream Ciphers Workshop, eSTREAM,
ECRYPT Stream Cipher Project, Report, Vol. 26,
p. 2007.

[5] Good, T., & Benaissa, M. (2007). Hardware
results for selected stream cipher candidates.
Proc. State of the Art of Stream Ciphers
Workshop, 191-204.

[6] National Institute of Standards and Technology
(2001). Specification for the ADVANCED
ENCRYPTION STANDARD (AES). Federal
Information Processing Standards Publication
197. http://csrc.nist.gov/publications/PubsFIPS
.html (accessed April 2012).

[7] Sugier, J. (2010). Low-cost hardware
implementation of Serpent cipher in
programmable devices. Monographs of System
Dependability Vol. 3: Technical Approach to
Dependability. Publishing House of Wrocław
University of Technology, 159-172.

[8] Sugier, J. (2012). Implementing AES and Serpent
ciphers in new generation of low-cost FPGA
devices. Advances in Intelligent and Soft
computing Vol. 170: Complex Systems and
Dependability. Springer, 273-288.

[9] Xilinx, Inc. (2009). Spartan-3 Family Data Sheet.
DS099.PDF, www.xilinx.com (accessed April
2013).

[10] Xilinx, Inc. (2011). Spartan-6 Family Overview.
DS160.PDF, www.xilinx.com (accessed April
2013).

[11] Yan, J., & Heys, H.M. (2007). Hardware
implementation of the Salsa20 and Phelix stream
ciphers. Proc. Canadian Conference on Electrical
and Computer Engineering CCECE 2007. IEEE,
1125-1128.

