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1. Introduction 
 

A hardware implementation is an important option 
for every cipher and numerous realizations using 
both mask- (ASIC) and field- programmable gate 
arrays (FPGA) silicon devices have been developed 
for AES contest candidates or for algorithms that 
took part in the ECRYPT project. In this work we 
present results obtained after implementation of 
different architectures of Salsa20 stream cipher in 
popular-grade FPGA devices. While most of the 
solutions described in the literature are customized 
for specific device architectures and/or operating 
environments and they are highly optimized to reach 
maximum efficiency either in speed or in size, in this 
work we look from different point at the task of 
cipher implementation. 
The terms “popular-grade” or “low-cost” that we 
refer to in the title and in the text are understood as 
follows: 1) the programmable devices used for 
implementation are chosen from inexpensive, 
popular and commonly used line of FPGA chips, 
widely available on the market; 2) the design is 
described in hardware description language on the 
relatively high level of abstraction (no less than at 
Register Transfer Level, RTL) and then synthesized 
and implemented fully automatically by standard 

software provided by the chip manufacturer, without 
any special “handmade” optimization, neither in 
layout nor routing. 
The text is organized as follows. In the next section 
we discuss organization of the Salsa20 algorithm as 
a hash function and as a stream cipher, then we 
introduce the three basic kinds of cipher 
implementation in hardware: the combinational, the 
pipelined and the iterative one, and finally we 
evaluate the results of automatic implementation of 
these architectures in the two selected families of 
FPGA devices. 
 
2. The Salsa20 cipher 
 

Salsa20 family of stream ciphers [2]-[3] has been 
developed by Daniel J. Bernstein from the University 
of Illinois at Chicago, USA, in 2005 and submitted to 
the eSTREAM project. After passing all phases of 
selection unmodified it has been included in the final 
portfolio of Profile 1 (software) ciphers along with 4 
other proposals. 
At its core the Salsa20 cipher is a hash function 
which operates in the counter mode as a stream 
cipher: the 64B[yte] input consisting of 32B of the 
key (or twice repeated 16B key) together with 8B 
nonce plus 8B counter and 16 constants bytes is 
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hashed into 64B result which is then XOR’ed with 
the plaintext. State of the cipher is also 64B wide and 
is represented as a series of 4B state words. During 
decryption the same hash result is XOR’ed with the 
ciphertext stream to produce plaintext. There is no 
feedback of the data stream to the hash stream. 
 
2.1. The Salsa20 hash function 
 

The Salsa20 hash function consists in application of 
20 rounds which are executed over the state q = (q0, 
q0, … q15), where each qi represents a single 32b[it] 
state word. Different permutations of the state words 
are used as input to even- and odd-numbered rounds 
but otherwise the in-round processing is identical so 
the whole organization is very uniform. Moreover, in 
the entire algorithm only the following three basic 
transformations are used, all operating on the entire 
32b words: 
- bitwise Exclusive-Or (XOR) of the two words, 

denoted as ⊕; 
- sum mod 232 of the two words, denoted as + 

(since there is no other kind of addition used here 
there is no risk of confusion); 

- rotation to the left by the given (constant) number 
of bits, denoted as  <<. 

In contrast to the contemporary symmetric block 
ciphers, in Salsa20 there is no key pre-processing 
path running in parallel with data (cipher) path which 
would compute a separate key for each round; the 
user supplied external key is embedded into the input 
64 bytes producing directly half of the 16 state words 
and then the 512b vector is processed in its entirety. 
The elementary organizational unit of the cipher is 
a quarterround function which transforms a group of 
four state words: quarterrorund(w0, w1, w2, w3) = 
(w0’, w1’, w2’, w3’) such that 
 
   w1’ = w1 ⊕ ( (w0 + w3) << 7 ) 
   w2’ = w2 ⊕ ( (w1’ + w0) << 9 ) 
   w3’ = w3 ⊕ ( (w2’ + w1’) << 13 ) 
   w0’ = w0 ⊕ ( (w3’ + w2’) << 18 ) 
 
The above equations are given in specific order in 
which they can be sequentially executed modifying 
wi words in place: first, w1 is replaced with the new 
value w1’ which is computed from the current w0 and 
w3 words, then w2 is replaced with the new value 
computed from w1’ and w0, then w3 is replaced with 
the value computed from w2’ and w1’, and finally w0 
is replaced with the value computed from w3’ and 
w2’. In this way the quarterround can be 
implemented in software as a chain of four 
transformations executed one after another without 
any temporary registers for intermediate storage of 

wi’ values. The flow of data which results from the 
above equations is graphically visualized in Figure 1. 
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Figure 1. Transformations of the state words in the 
Salsa20 quarterround function 
 
Four quarterrounds operating in parallel constitute 
a single round of the cipher and this can be one of the 
two kinds: a row round or a column round. A row 
round function is defined as rowround( q ) = q’ such 
that 
 
   (q0’, q1’, q2’, q3’) = quarterround(q0, q1, q2, q3) 

   (q5’, q6’, q7’, q4’) = quarterround(q5, q6, q7, q4) 

   (q10’, q11’, q8’, q9’) = quarterround(q10, q11, q8, q9) 

   (q15’, q12’, q13’, q14’) = 
 quarterround(q15, q12, q13, q14) 

 
whereas a column round function is defined as 
columnround ( q ) = q’ such that 
 
   ( q0’, q4’, q8’, q12’ ) = quarterround( q0, q4, q8, q12 ) 

   ( q5’, q9’, q13’, q1’ ) = quarterround( q5, q9, q13, q1 ) 

   ( q10’, q14’, q2’, q6’ ) =  
quarterround( q10, q14, q2, q6 ) 

   ( q15’, q3’, q7’, q11’ ) =  
quarterround( q15, q3, q7, q11 ) 

 
Justification for the round names becomes evident 
after the quarterround inputs are marked on the 16 
words of the state q visualized as a 4×4 matrix, as it 
is done in Figure 2. In both cases the four 
quarterround functions are loaded with, respectively, 
rows (in a row round) and columns (in a column 
round) extracted from the matrix and then rotated: 
the k-th row or column (k = 0 … 3) is rotated by k 
positions to the left or upwards so that the diagonal 
elements are given always as the first quarterround 
argument w0. 
A column round followed by a row round make up 
a so called double round: 
 
   doubleround( q ) = rowround( columnround( q ) ) 
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q0   q1   q2   q3 
        q4   q5   q6   q7 
        q8   q9   q10   q11 
        q12   q13   q14   q15 

 
q0   q1   q2   q3 
        q4   q5   q6   q7 
        q8   q9   q10   q11 
        q12   q13   q14   q15 

 

Figure 2. Arrangement of the state words at the 
inputs to the quarterrounds in a row round (above) 
and a column round (below) 
 
Having introduced all the above elementary 
components the final hash function can be defined. 
In short, to generate the Salsa20 hash value for a 64B 
input x, first the double round is applied ten times to 
it and then the result is added: 
 
   Salsa20( x ) = doubleround10( x ) + x 
 
Nevertheless, strictly speaking, since all the core 
definitions operate on a sequence of 4B words, the 
input x as well as the result needs to be transformed 
using little endian notation (btw note that the ‘+’ sign 
in the above equation is the sum mod 232 applied on 
a word-by-word basis). The complete and 
unambiguous specification of the computational flow 
for calculation of Salsa20( x ) begins with 
transformation of the 64 bytes into 16 words: 
 
   x0 = x( 3…0 ) 
   x1 = x( 7…4 ) 
       … 

   x15 = x( 63…60 ) 
 
then states the application of ten double rounds: 
 
   ( y0, y1, … y15 ) = doubleround10( x0, x1, … x15 ) 
 
and ends with the inverse transformation of the result 
into 64 bytes which make up the final hash value: 
 
   Salsa20( x ) = ( littleendian–1( y0 + x0 ), 
 littleendian–1( y1 + x1 ), 
 … 
 littleendian–1( y15 + x15 ) ) 
 
2.2. The Salsa20 encryption function 
 

As mentioned in the introduction, the Salsa20 
encryption scheme is a hash function operating in 
a counter mode where the hash result is XOR’ed 

with plaintext to give ciphertext (during encryption) 
or with ciphertext to give plaintext (during 
decryption). This scheme is outlined in Figure 3. The 
simple XOR operation as the final and the only 
transformation applied to the plaintext makes 
encryption and decryption equally efficient. It also 
allows to use the same hash module in both 
operations what significantly simplifies either 
software or hardware implementations. 
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Figure 3. Salsa20 hash function operating as 
a stream cipher 
 
To create 64 bytes of the input to the hash function, 
the 16 or 32B key  k, the 8B nonce (number once – 
a unique message identifier) and the 8B counter n are 
expanded with 16 bytes of constants: 
 
   (�0, �1, �2, �3 ) = ( 0x61707865, 0x3120646E,  
                                0x79622D36, 0x6B206574 ) 
   (�0, �1, �2, �3 ) = ( 0x61707865, 0x3320646E,  
                                   0x79622D32, 0x6B206574 )  
 
which are ASCII encoded strings “expand 16-byte 
key” and “expand 32-byte key”. If the key is 16B the 
hash value h is computed using �i constants with the 
key repeated twice in  the input: 
 
   h = Salsa20(�0, k, �1, v, n, �2, k, �3 ) 
 
In a case when the key is 32B long it is split into 
halves k = ( kL, kH ) and supplemented with �i 
constants: 
 
   h = Salsa20(�0, kL, �1, v, n, �2, kH, �3 ) 
 
Figure 4 visualizes mapping of the encryption input 
onto the state matrix of the hash function for the case 
of 32B key. It can be seen that the constant words are 
placed on the diagonal of the matrix with the two 
nonce words located in its upper half and the two 
counter words in the lower; the key words are 
included in the both halves. 
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 σ0  k0  k1  k2 
 k3  σ1  v0  v1 
 n0  n1  σ2  k4 
 k5  k6  k7  σ3 

 

Figure 4. Cipher parameters as the 16 words loaded 
to the hash function (case of a 32B key shown) 
 
Since the counter n (which is incremented for each 
block of the generated cipher) is 64b long, the 
maximum length of the encoded stream is limited to 
264 64B blocks or 270 bytes (≈1 billion TB). As 
mentioned before, the Salsa20 decryption function 
would have exactly the same structure as the one in 
Figure 3 but with 64B ciphertext block entering the 
input and the same size plaintext leaving the output. 
 
3.  Implementing the cipher in configurable 
hardware 
 

Any round-based cipher can be efficiently 
implemented in software using an iterative scheme 
where operations of the single round are coded once 
and then applied to the state variables repeatedly in 
a loop as many times as required. Parallel execution 
of multiple program threads which is viable in 
contemporary multi-core processors can be utilized 
to speed-up execution of the round provided that its 
processing can be separated into multiple 
independent tasks (in Salsa20 the quarterround 
transformations are ideally suited to such 
a parallelization). 
When transferring the algorithm to hardware the 
designer is facing a larger diversity of feasible 
options. In general, the iterative loop can be 
completely unrolled with all the rounds replicated in 
hardware as a cascade of modules or it can be 
unrolled in part (e.g. one fourth of the rounds 
replicated in hardware with the state signals being 
passed through four times). Another possibilities 
comes up if the loop is not unrolled: just one 
hardware module can be implemented in hardware 
and its operation on the set of state signals is 
repeated as many times as there are rounds in the 
cipher, or the processing of the single round can be 
divided into multiple execution of a sub-module – 
again, in the case of Salsa20 these would be the 
quarterround function – and execution of one round 
is accomplished in multiple steps – i.e. in multiple 
clock cycles. 
The choice of architecture type usually depends on 
specifically defined cost criteria and comes from the 
optimal balance between required speed vs. 
acceptable size of the hardware: organizations with 
completely unrolled loop can finish encoding in one 

clock cycle but for contemporary ciphers with many 
rounds of complicated processing they usually 
demand very large (or even huge) amounts of 
resources. On the other hand, the iterative 
organizations need to implement in silicon just one 
round or even a part of it (e.g. one fourth in case of 
a single Salsa20 quarterround) so the size of the 
design becomes reduced to a small fraction but the 
speed of the processing is almost equally decreased. 
In this paper, analogously to our previous work [7]-
[8], we will examine implementations of the Salsa20 
encryption function for the three fundamental types 
of architectures that are introduced in sections 3.2 – 
3.4. Before their presentation, in section 3.1 we will 
discuss some basic characteristics of the selected 
hardware platforms. 
 
3.1. Specifics of FPGA implementation  
 

Xilinx, Inc. is the inventor of Field Programmable 
Gate Array (FPGA) devices and still one of the most 
successful suppliers of these circuits worldwide. Like 
in [8], it was decided to choose two popular-grade 
device families from this manufacturer for case 
studies included in this work: an older, now more 
archetypal, Spartan-3 [9] and a newer Spartan-6 [10]. 
In this point we will concisely discuss the basic 
aspects of these two architectures that affect 
efficiency of cipher implementation, in both size and 
speed characteristics of the resultant hardware. 
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Figure 5. Configurable resources of a single logic 
cell of Xilinx Spartan-3 and Spartan-6 devices 
 
For a simplified structure of the logic cell in the two 
Xilinx families please see Figure 5. In all FPGA 
devices from this manufacturer, so called Look-Up 
Table (LUT) is the element located in every cell 
which is provided for generation of any 
combinational function. A single LUT is a ROM 
table filled with zeroes and ones during configuration 
according to the function which should be presented 
at its output. In case of Spartan-3 devices, the LUTs 
are 4-input tables holding 16b each thus they can 
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generate any function of maximum 4 variables. 
A function of fever variables still must occupy one 
LUT while any wider function will use more of them 
(5-input function = 32b or 2 LUTs, 6-input function 
= 64b or 4 LUTs, etc.). In Spartan-6 architecture, in 
turn, every LUT table has the total capacity of 64b 
being sufficient for generation of any 6-input 
Boolean function but, alternatively, can be 
configured for generation of any two 5-input 
functions provided that they share the same set of 
input variables. 
A 6-input / 2×5-input LUT generator found in 
Spartan-6 may present a significant advantage in 
implementation of wide Boolean functions (i.e. 
functions of many variables) when compared to 4-
input LUTs of Spartan-3. As we have shown in [7]-
[8], this can be especially beneficial e.g. in a case of 
the AES substitution boxes which create an 
important and substantial part in definition of the 
cipher. While a Serpent S-Box is a 4-input function 
which fits efficiently in Spartan-3 LUT elements, 
AES S-Boxes have 8 inputs and their mapping in 
Spartan-3 is problematic. In such case switching to 
Spartan-6 gives noticeable improvements that are not 
so much evident when moving Serpent to the new 
architecture. 
Additionally, in both architectures the signal which 
goes out of the LUT can be optionally stored in the 
flip-flop so virtually every signal generated in the 
array can be easily synchronously registered: 
introducing some amount of registers into the FPGA 
project, like it is e.g. in pipelined designs, usually 
can be accomplished at very little additional cost. 
In both Spartan families two logic cells represented 
in Figure 5 make up a slice – an elementary unit of 
FPGA organization which includes two LUTs and 2 
(Spartan-3) or 4 (Spartan-6) flip-flops. Size of any 
design after its implementation in the array is usually 
expressed as a number of occupied slices with 
numbers of utilized LUTs and registers 
communicated as the two supplementary measures. 
Moreover, it should be noted that in real designs all 
resources (all LUTs and all registers) are never 
actually utilized inside every occupied slice; in some 
of them the registers adjacent to occupied LUTs 
remain idle or – conversely – only a register is 
utilized and the related  LUT remains unused. 
In the following discussion we will present 
parameters of the designs after their implementation 
in XC3S2000 (Spartan-3) and XC6SLX75 (Spartan-
6) devices. In all cases the VHDL specification was 
synthesized by the XST synthesis tool in Xilinx ISE 
14.4 design suite and then implemented for the given 
two devices. The implementation was fully 
automatic, without any hand-made optimizations 
neither in placement nor in routing. For every design 

we will specify the basic speed and size parameters: 
the minimum clock period (Tclk) and the maximum 
operating frequency (fmax) as they were estimated by 
the post-place & route static timing analysis, the 
latency expressed in clock cycles and in 
nanoseconds, the overall throughput in Gbps 
calculated for the fmax, size of the design expressed in 
the number of occupied slices, LUTs and registers, 
and a synthetic performance measure which is 
commonly used for estimation of speed vs. size 
efficiency – Mbps of the throughput per one 
occupied slice. 
 
3.2. The combinational architecture 
 

In this organization hardware structure closely 
reflects flow of the data that is being encoded. All 20 
rounds of the cipher are implemented as separate 
hardware modules that create a continuous 
combinational path from registers on the input of the 
first round of the Salsa20 hash function to registers 
on the outputs of the last round. In-between, the 
design operates as a combinational function that 
maps 512 input bits (key, nonce, counter and 
constants) into 512 output bits (hash) thus the 
reported maximum frequency of operation is actually 
estimated speed of operation of the entire hash 
function.  In practical applications additional logic 
would be required for XOR’ing the plaintext with the 
hash value but this would require so minimal 
resources that it would not affect the estimated speed 
of operation and also the increase in resource 
consumption would be negligible. 
The design was specified by porting the specification 
[2] to the VHDL language using strict RTL style: 
there were no instances of library elements, no 
sequential (procedural) descriptions were inserted 
and no explicit references to any specific hardware 
attributes were made so that the same code could be 
synthesized for entirely different device family, even 
form a different manufacturer. Definition of all 
internal signals was based on the IEEE standard 
std_logic_vector type and at the bottom of the design 
hierarchy there was only one kind of entity – the one 
with implementation of the quarterround function. Its 
internal structure followed closely data paths that can 
be identified in Figure 1 and, due to very simple 
basic operations of this cipher, it did not require any 
sub-modules: both the XOR and the addition of the 
32b vectors were done with the IEEE.std_logic_1164 
standard operators whereas the rotations were 
described as a simple bit reordering in the signal 
vectors and expressed just as concurrent signal 
assignments that do not require any logic at all (in 
hardware implementations, as opposed to software 
realizations, rotations are done exclusively in routing 
and actually do not require any resources). 
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After constructing both kinds of the rounds by using 
4 direct instances of the quarterround entities, the 
double round entity was defined and – finally – the 
10-element cascade of such entities was constructed 
with a single for…generate statement in a concise 
and clear manner. 
During implementation in the Xilinx ISE design suite 
it turned out that the tools are unable to automatically 
route this design on neither platform (Spartan-3 nor 
Spartan-6) due to size and complexity of signal 
connections. The synthesis could be accomplished 
successfully without any significant messages just 
like the translate, map and placement steps, but the 
router tool, after substantially longer running time, 
quit with a message about a very dense and 
congested design. 
 
Table 1. Size of the combinational architecture vs. 
combinational implementations of other ciphers [8] 
 

  Spartan-3 Spartan-6 

  Salsa20 AES Salsa20 Serpent 

Slices 14 838 17 428 5 079 5 243 

LUTs 28 670 34 566 19 040 16 888 

 
To analyse this situation, Table 1 shows the size 
parameters for this architecture as they were reported 
after the placement step and compares them with 
equivalent combinational architectures of two other 
well-known ciphers that were successfully 
implemented with the same software tools and using 
the same design methodology in [8]: AES [6] in 
XC3S2000 and Serpent [1] in XC6SLX75. Although 
it can be seen that the size of the Salsa20 design 
expressed in terms of occupied slices and LUT 
elements is comparable, and actually somewhat 
lower, than size of successfully implemented 
combinational organizations of AES and Serpent, in 
this case complexity and size of the Salsa20 
combinational network, undivided into a separate 
cipher and key paths, turned out to be a prohibitive 
factor for the router tool. Commenting on processing 
complexity of these three ciphers it should be noted 
that the AES consists of 10 rounds working on 128b 
of data in cipher path and 128b of data in key 
expansion path (256b in total) and Serpent has 32 
rounds working also on 128b in cipher plus 128b in 
key paths, whereas Salsa20 transforms a single 
uniform 512b state vector in 20 rounds. 
This fact is an interesting observation about 
complexity of the Salsa20 hash function. 
Nevertheless, although the combinational 
architecture could not be automatically implemented 
in hardware it is included in this discussion because 
it made a starting point for development of another 

successful architectures which are described in the 
following two sections. 
 
3.3. The pipelined architectures 
 

The general idea of pipelining is to introduce 
registers evenly spaced along the combinational path 
so that in synchronized operation multiple blocks of 
data are processed simultaneously one by another 
inside the pipeline stages at the same time during 
every clock cycle. In the above defined 
combinational architecture of the Salsa20 cipher the 
natural points of placing the pipeline registers are the 
signals that cross boundaries between the cipher 
rounds; this transforms each round into a separate 
pipeline stage. In technical terms such organization 
can be interpreted as a complete outer loop unrolling 
and leads to 20 pipeline stages – a valid hash value 
appears 20 clock cycles after loading the data at the 
inputs. Although such modification does not improve 
the latency (the time delay measured from loading 
the data to reading the result) which can be actually 
somewhat longer compared to the combinational 
propagation due to non-zero flip-flop switching time 
and non-ideal pipelining, the overall throughput of 
the circuit (amount of data processed in unit time) 
rises substantially thanks to the simultaneous 
processing of multiple data blocks in the pipeline 
stages. 
Adding large amount of registers (512 × number of 
pipeline stages) may seem to be a considerable 
increase in resource usage but in case of FPGA 
architectures this increase is easily absorbed by the 
array. As discussed in section 3.1, in these devices 
a flip-flop is included in every logic cell right at the 
output of the combinational configurable element 
(LUT) so the only actual difference is that now some 
of them are used for registering the LUT signal while 
in combinational organization they were left unused. 
This usually does not affect the total number of 
occupied logic cells but just improves their 
utilization. 
In a case study of this paper we have tested two 
variants of this architecture: pipelining the data path 
with 10 stages, i.e. with stage boundaries at Salsa20 
double rounds, and with 20 stages, i.e. with stage 
boundaries at every column and row round. The 
results for both families of FPGA devices can be 
found in Table 2. 
First of all it should be noted that after transforming 
the combinational organization (which could not be 
implemented) into a pipelined one the 
implementation completed succesfuly so the table 
lists also performance parameters which were 
derived from minimal clock frequency estimated by 
the static timing analysis of the completely routed 
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design. At first it may seem to be a perplexing 
behaviour that enlarging an already huge design by 
adding a considerable amount of flip-flops made 
possible its implementation, but this actually 
confirms that the routing of the previous architecture 
was impossible due to very long combinational paths 
that run across all the cipher rounds. After splitting 
these paths into a number of shorter segments the 
task of the router was much simpler hence the tool 
was able to complete it successfully. 
 
Table 2. Parameters of the two versions of the 
pipelined designs: with 10 and 20 pipeline stages 
 

  Spartan-3 Spartan-6 

  P.x10 P.x20 P.x10 P.x20 

min Tclk [ns] 58.0 24.0 22.7 15.2 

fmax[MHz]  17.2 41.6 44.0 65.9 

Latency [Tclk] 10 20 10 20 

Latency [ns] 579.9 480.6 227.5 303.4 

Throughput [Gbps] 8.8 21.3 22.5 33.7 

Mbps / Slice 0.77 1.74 4.7 6.36 

Occupied Slices 11 539 12 254 4 765 5 307 
Slice LUTs 21 827 21 235 17 268 21 140 

Slice Registers 5 888 11 008 5 888 11 008 

 
Secondly, the listed size parameters can be compared 
to that reported in Table 1 to see that adding the flip-
flops, although in large quantity, did not produce any 
significant increase in the number of occupied slices 
and even in case of Spartan-3 device their number 
has actually decreased by nearly 20%. This 
observation proves that the regular, round-based 
structure of Salsa20 transformations, like it was in 
case of the AES and Serpent ciphers, is very well 
suited for the pipelining and the additional registers 
needed for this purpose can be located in the FPGA 
slices without incurring any increase in the total 
design size (or even, as in the considered case of 
Spartan-3, it can help to better utilize the slices). 
Finally, the presented parameters allow evaluation of 
the two pipeline variants: with 10 and with 20 stages. 
It would be natural to expect that twice shorter 
pipeline stages in P.x20 organization should give 
roughly twice shorter clock period and this is the 
case for Spartan-3 architecture: the decrease is from 
58 to 24ns, so it is even greater than expected 
(evidently the implementation of the P.x10 variant 
again posed some additional difficulties). 
Nevertheless the decrease is not so big on Spartan-6 
platform: 22.7 vs. 15.2ns is the fall by one third only. 
Consequently, the absolute values of the latency 
parameter are in favour of P.x20 on Spartan-3 
platform and of P.x10 on Spartan-6. There is no such 
discrepancy when looking at the throughput values 

since they will always be doubled for the P.x20 
variant and therefore it will always prevail; the 
difference is further modified by the Tclk and fmax – 
widened in Spartan-3 and narrowed in Spartan-6. 
Since there is no significant differences in design 
sizes, the Mbps per slice value varies in the same 
way as the raw throughput. 
 
3.4. The iterative architectures 
 

The iterative architectures investigated in this work 
were based on one round taken from both versions of 
the pipelined organizations presented in the previous 
section, so we will examine two iterative variants:  
I.x10 and I.x20. 
The I.x10 needed 10 clock cycles to complete the 
processing of a single block before the next one can 
be loaded but it had implemented in hardware the 
whole double round, i.e. a column round followed by 
the row round, each comprising four instances of 
quarterround entities. Such a module was 
supplemented with a necessary multiplexing logic 
(loading the data in – looping back – loading the data 
out) and a simple controller responsible for counting 
loop repetitions (round number) and supervising the 
multiplexers. The controller included just a single 
“idle/busy” register and a rudimentary round counter; 
no more complicated extra logic was necessary. 
Since all the ten repetitions of the double round are 
strictly identical, such a simple scheme was 
sufficient. 
The I.x20 variant computed one block of data in 20 
clock cycles and in general it contained the same 
simple control logic as the I.x10, but here the 20 
iterations were not exactly the same: the even-
numbered rounds (when numbered from 0 to 19) 
should apply the column round transformation while 
the odd-numbered ones – the row round one. In both 
cases the needed hardware consisted of just four 
quarterround modules and they were replicated in 
hardware only once but also two blocks of extra 
multiplexing of inputs and outputs were necessary to 
differentiate permutations of the state words in the 
even and odd iterations. 
Parameters of the two variants obtained after their 
implementation in the selected devices are included 
in Table 3. One can see that the size difference is far 
from 1:2 ratio as one could expect: number of slices 
in I.x10 architecture is greater by only 5-10% despite 
the fact that it includes implementation of two rounds 
vs. just one in I.x20. This shows that the overhead 
introduced with the extra multiplexing on the input 
and output counterweights the expected savings. The 
performance comparison is again different on the 
two hardware platforms. In the older architecture of 
Spartan-3 the reduction in Ix.20 Tclk is almost to the 
expected 50% so the overall throughput and Mbps 
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per slice are practically the same. In Spartan-6, on 
the other hand, we see not so large decrease and 
therefore the performance is in favour of the Ix.10 
variant. 
 
Table 3. Two versions of the iterative architecture: 
with 10 and 20 repetitions 
 

  Spartan-3 Spartan-6 

  I.x10 I.x20 I.x10 I.x20 

min Tclk [ns] 51.7 24.7 20.8 12.4 

fmax[MHz]  19.4 40.4 48.0 80.5 

Latency [Tclk] 10 20 10 20 

Latency [ns] 516.8 494.6 208.3 248.5 

Throughput [Gbps] 0.99 1.04 2.46 2.06 

Mbps / Slice 0.49 0.56 3.00 2.60 

Occupied Slices 2 036 1 858 818 791 
Slice LUTs 3 374 3 250 2 955 2 611 

Slice Registers 1 286 1 294 1 317 1 296 

 
4. Conclusions 
 

Despite fully automatic implementation and very 
simple specification in the VHDL language, the 
proposed pipelined architectures of Salsa20 ciphers 
can reach a throughput levels over 20 Gbps in older 
Spartan-3 and over 30 Gbps in newer Spartan-6 
devices. FPGA implementations described in [4]-[5] 
and [11] are not directly comparable but have 
significantly lower speed (e.g. 1.2 Gbps in Spartan-3 
device in [4]) and also lower throughput to area 
ratios (0.74 Mbps/slice in [4] and 0.2 Mbps/slice in 
a highly iterative architecture proposed in [11]). 
Comparing the two variants of pipelined and iterative 
architectures one can try to recommend the optimal 
organization with the good balance between speed 
and size. In case of the P.x10 and P.x20 architectures 
the latter seems to be a better option: although its 
latency is bigger on Spartan-6 platform, the 
significant increase in both throughput and 
Mbps/slice ratio is a more than an adequate 
compensation. In case of the iterative architectures, 
size reduction in I.x20 is not as large as expected and 
the I.x10 turns out to be a better overall performer, 
especially in the newer Spartan-6 device. 
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