
ANNUAL OF NAVIGATION 26/2019

98

DOI: 10.1515/aon-2019-0010

MEASUREMENTS OF SIGNAL DELAYS IN SOFTWARE

DEFINED RADIO WITH USE OF GNSS MODULES

Oskar Mężyk, Michał Doligalski, Ryszard Rybski

Institute of Metrology, Electronics and Computer Science,

 University of Zielona Góra

ABSTRACT

In the work a method of latency measurement in software defined radio (SDR) is proposed and validated.

The test setup uses customer grade GNSS modules as reference time sources and enables relative delay

calculation between signals received directly and those bypassed through SDR platform. The method is

hardware agnostic in a sense, that it does not involve any custom software or hardware modifications. Tests that

compare reported carrier-to-noise ratio and positioning errors were performed to prove functionality of such

system. Additionally, authors measured several gnuradio blocks with respect to their impact on total latency

introduced into signal path. All tests were performed on a bladeRF low-cost RF front-end. Minimum observed

latency for the signal was below 10 ms.

Keywords – GNSS, SDR

INTRODUCTION

 Software Defined Radio is a common name for set of software and hardware tools used for research and

development in the field of telecommunication. Typically, such set consists of an RF front-end that acquires

signal from the antenna and a computer program that realizes data processing algorithm. Such toolset, due to its

flexibility, enables rapid implementation of new signal processing techniques without a need of costly

development of dedicated hardware.

 Architecture of SDR hardware platforms varies between applications, but in all of them the split between

“hardware” and “software” processing happens right after signal is down-converted and digitized by analog-to-

digital converter. Samples may be sent directly to the PC or pre-processed by an on-board FPGA (hybrid

solution), which the middle-level designs usually have. In all cases, when samples leave hardware, they are

transported to the operating system (OS) of the PC via USB or LAN interface, where drivers, software libraries

and high-level applications take care for manipulation of data. While signal samples are moved through the

layers of bus/network protocols and then into the OS, they experience various delays due to buffering, bus

congestion, packet routing etc. Each of this step and its delays may be subject to a separate analysis, but since

it is rarely possible to control them in a typical PC – the summed latency is of interest.

 The gnuradio is a one of the most popular software frameworks for RF signal manipulation. It may work as

a software only implementation or it can interface hardware front-end and process real, sampled data. It is

designed for efficient data processing and became a basis for variety of demodulators and receivers, including

also GNSS software receivers [Falone, 2014].

ANNUAL OF NAVIGATION 26/2019

99

 A proposed method of measurement of total SDR processing latency takes an advantage of the global precise

timing tool – the Global Navigation Satellite System (GNSS) network. Even with use of consumer grade

modules it is possible to measure time of events down to nanoseconds precision and authors exploit that

possibility. The main motivation of the work is to establish ability of SDR platforms to manipulate and

reconstruct GNSS signals in real-time.

 Next section reviews previous works on the gnuradio latency analysis. It is followed by the measurement

method description and results presentation. Paper ends with discussion on achieved results and conclusion

sections.

PREVIOUS WORKS

 The root concept of gnuradio is to maximize throughput by using high data parallelism. To enable that, a

dynamic buffering scheme has been implemented so that a PC system capabilities are utilized at maximum.

Such approach leads to a non-deterministic processing workload and resulting processing time by default

[Müller, 2017]. Basic implementation has been made with highest throughput in mind, but with advancing

processing powers of desktop PCs, the latency aspect had to be addressed.

 In [Suganuma et al., 2012] authors design and implement a method of dynamic buffer scaling, optimizing

latency for processing blocks and whole signal flow path. This method has been implemented in the gnuradio

and its impact can be seen in achieved results of this paper.

 A comprehensive work about SDR latency is [Truong et al., 2013]. Authors analyse different layers of the

SDR system with use of time-stamping data and Round-Trip Time (RTT) measurements. The measurement

setup included two SDR hardware platforms, wireless modules and a set of additional software tools to perform

packet transmission loop back. In this way all layers of software and hardware have been tested, but the method

is rather complicated to repeat without detailed knowledge of said time stamping tools and is also hardware

dependant.

 Similar approach may be found in [Schmid, 2007] although prior to actual packet communication authors

perform a simpler test using function generator and a mixed hardware-software edge detection mechanism. With

this setup more accurate measurement of USB latencies were performed, but still – the method is dependent on

the available hardware and its modifications.

 In this paper, authors propose a different approach to SDR latency measurements, which to authors’ best

knowledge, may be more universal and simpler to implement. The method is described in following sections.

MEASUREMENT METHOD

 Basic idea of the method is shown on the figure 1 – the signal from antenna is split and routed separately

into two separate GNSS modules. In one of the paths the SDR block is inserted which can be seen as a delay

block in signal path. The GNSS module that is connected directly to RF signal stays in lock and serves as a time

reference for the incoming 1 PPS (one pulse per second) signal from the other module that receives signal from

SDR block. This way the relative time difference between actual GNSS time and time based on the delayed

signal can be measured.

Fig.1: SDR seen as a delay block for antenna signal. Additional equipment not shown.

The method assumes following setup nuances:

ANNUAL OF NAVIGATION 26/2019

100

 the SDR block contains hardware platform that is a full duplex transceiver,

 said hardware platform has enough bandwidth to process GNSS data,

 the PC computer (included in the SDR block) has enough resources to process data at required sampling

frequency,

 manipulation of data is reversible or does not influence signal structure significantly,

 forward and reverse manipulation have similar computing power requirements, as they need to be

included both in the signal path.

From the two latter requirements one can clearly see that not all processes may be measured this way – for the

purpose of this work following gnuradio blocks have been chosen:

 delay,

 FFT and IFFT pair,

 FIR & FFT filter,

 FFT cross-correlation with unit function.

All signal processing algorithms were implemented using gnuradio-companion application.

CONCEPT VALIDATION

 In order to proceed with measurements, the setup was created and validated for proper operation. For the

SDR hardware platform the bladeRF x40 [Nuand, 2019] has been chosen – it is a relatively advanced platform

that allows processing data up to 20Mhz of bandwidth and uses USB3.0. Its input frequency range includes

GPS L1 band, and for reason of simplicity only this signal was used during measurements. Since measured

delays were in milliseconds range it is assumed that actual GNSS system used, as well as antenna quality, had

of little influence on results.

 Other equipment included GNSS modules: u-blox NEO-M8T and Telit 873, attenuators, low-noise amplifier

(LNA), RF power splitter, GPS active antenna and a bias-tee. Full setup is shown on figure 2. Signal was split

from a single antenna, after bias tee and LNA so their influence on relative timing may be omitted. The LNA

was introduced to boost signal for the bladeRF front-end as it has much lower sensitivity than GNSS modules.

Overall gain of active antenna and LNA was around 50dB and it imposed a need to add a 10dB attenuator on

the input of Mod1. The 10dB attenuator on the output of SDR served as a protection from overloading the Mod2

module input. PC computer included in the SDR block was a desktop PC with quad-core CPU, 16GB of RAM

and SSD.

Fig.2: Splitting signal just before SDR eliminated cable delays from measurements.

 To validate the concept first direct and SDR-bypassed signals were input into two same (NEO-M8T) GNSS

modules and output was monitored for fix quality and carrier to noise ratio (CNo). Sampling frequency of

bladeRF front-end was set to 4Msps (IQ samples per second) and input/output bandwidth to 2.8Mhz to cover

GPS L1 band with a margin. Since all used GNSS modules had SAW filters on their inputs, the actual margin

had little influence on the introduced noise. Transmit gain of SDR was adjusted so that the reported value of

AGC of both modules was similar. Figure 3 shows carrier to noise ratio as reported by the Mod2 for visible

ANNUAL OF NAVIGATION 26/2019

101

satellites with value greater than 25dB and status flag “code and carrier locked” available in UBX-NAV-SAT

message of UBX protocol.

Fig.3: Left: reported CNo of SDR-bypassed satellite signals; right: compared direct and bypassed CNo for GPS

satellite SV12 – a visible 5dB drop for bypassed signal.

Sampling rate 4Msps.

 The CNo reported by GNSS modules was collected and compared. The average loss in CNo of 3.4 to 4.9dB

was observed for Mod2, but it maintained lock which proved that the whole setup works correctly.

 In order to better understand quality of the bypassed signal, the Mod2 was interrogated for jamming indicator

as described in u-blox M8 Receiver Description [u-blox, 2018] in section 14.2. The value of this indicator is

relative and it indicates presence of narrowband disturbance on the receiver input versus “normal” conditions.

For bypassed signal this value raised significantly exposing known limitations of the chosen RF front-end

hardware. Since bladeRF is a zero-IF architecture it suffers from large LO leakage that is visible in the middle

of frequency spectrum. This large “spike” saturates AGC of GNSS module and causes drop in overall CNo

reported by Mod2. To overcome the issue RF front-end was calibrated using its internal functionality and TX

gain was reduced, but still indicator showed significant interference.

 Since further, precise calibration of TX path required high quality vector network analysers authors validated

possibility to move the centre frequency away from the middle of the input pass-band. To achieve that the RX

and TX frequency were set to 1573Mhz, sampling rate was increased to 8Msps and input/output bandwidth

extended to 7Mhz. This way GPS L1 was still covered with the increased bandwidth and the LO leakage spike

was shifted away from the spectrum of interest. As can be seen on figure 4 reported CNo maintained high values,

enabling valid lock of the GNSS module. Average CNo drop for this scenario was measured in range of 1.6 to

2.4dB so it could have been chosen as solution. Unfortunately, at 8Msps the gnuradio reported occasional buffer

overruns which caused signal discontinuities and variations in NEO-M8T internal clocks, which in turn led to

erratic time difference measurement. For further tests authors chose reduced sampling rate and lower CNo

reported against higher quality signal, but with difficult to control timing variations.

Fig.4: 8Msps scenario; left: reported CNo of SDR-bypassed satellite signals; right: compared direct and bypassed CNo

for GPS satellite SV11 – a visible 2-3dB drop for bypassed signal.

ANNUAL OF NAVIGATION 26/2019

102

 As a final confirmation of the proper operation of Mod2 its reported position was compared to Mod1, using

data from GPGLL NMEA message. Shown on figure 5 is the position trace within 5 minutes of continuous

operation after acquiring fix by Mod2.

Fig.5: Reported position for direct (black) and SDR-bypassed (grey) signals; left: 4Msps at 1575.42Mhz; right: at

8Msps at 1573Mhz.

Smaller reported position differences and lack of signal discontinuities proved that scenario with 4Msps at

1575.42Mhz is the right choice for conducting latency measurements described in next section.

SDR LATENCY MEASUREMENTS

 For the actual SDR latency measurement Mod2 was replaced by Telit 873 module. It has inherent delay on

1PPS signal output which made relative measurements always positive and reduced complexity on calculations.

The 400 s test run showed average relative delay (between Mod1 and Mod2) of 110.90 ns with std dev of 10.7

ns with both modules locked directly to satellite signal. The quality of signal was not monitored and it was

assumed, that valid 1PPS output signal was enough to prove proper signal structure.

 The gnuradio flow (block diagram) for basic measurements consisted only of signal sink, signal source and

required minimum variables like sampling rate etc. For the SDR-bypassed signal, without any additional block,

a latency of 9 ms and 444797 ns was measured in first run. In second run value of milliseconds stayed at 9 ms,

but nanoseconds varied and stabilized at value of 472273. Standard deviation of the measured, stable runs was

9.9 ns and 13.35 ns accordingly.

 Next the delay block was inserted in line with sample stream of gnuradio. The block is implemented as a

linear buffer of samples with both positive and negative value of delay possible. Since negative delay would

require sample dropping and cause discontinuities – only positive values were considered. Each run required

power cycling of the Mod2 to perform a “cold start” on the module. Drastic change of delay block value on the

fly required from GNSS module to adjust its internal clocks in a linear manner which could take several minutes

and lead to occasional loss of lock.

Table 1: Gnuradio “Delay block” latency for different delay settings

Delay block

value [ms]

Measured

value [ms]

Measured

value [ns]

Std Dev

[ns]

Disabled 9 850763 9.1

0 12 833664 10.0

100 109 783703 9.7

250 253 661875 9.5

 As a next measured block, the FFT was chosen. Since single transformation would change structure of the

signal, a corresponding IFFT (Inverse FFT) was also included, as shown on figure 6.

ANNUAL OF NAVIGATION 26/2019

103

Fig.6: Implementing FFT/IFFT pair in gnuradio requires additional scaling factor of 1/vector_size to restore amplitude

of the signal.

 During processing the data for FFT/IFFT pair measurements showed more frequent variations of the delay

in range of hundreds of microseconds. For the FFT of 1024 length the variation between 5e6 to 9e6 ns occurred

but while stable – standard deviation fell to tens of ns.

Table 2: Delays imposed by single FFT-IFFT pair of transformations with different vector lengths.

FFT size

Measured

value [ms]

Min. value

of [ns]

Max. value

of [ns]

128 19 585390 585435

1024 15 524768 958053

8192 14 555371 796042

 Another block measured was the frequency translating filter (Frequency Xlating Filter). Each time a low

pass filter was designed with the Filter Design Tool present in gnuradio with parameters allowing that full GPS

L1 band is passed without modification. Complexity (i.e. number of taps) was increased by reducing transition

band of the filter, maintaining stop band beyond wanted signal frequency spectrum.

Table 3.: Only filters of highest complexity showed significant increase in latency.

Filter

type
Taps

Measured

value [ms]

Min. value

of [ns]

Max. value

of [ns]

FIR 27, Real 12 122554 989851

FIR 55, Real 23 313531 313667

FIR 107, Real 20 219318 633578

FIR 11, Complex 19 840126 840210

FIR 55, Complex 19 691773 691849

FIR 109, Complex 33 140008 712847

FFT 11, Complex 27 935515 935591

FFT 55, Complex 14 471051 859358

FFT 109, Complex 28 415597 415663

 Final transformation taken under testing was cross-correlation of signals. According to theorem and Fourier

transform characteristics cross correlation can be calculated in frequency domain, with operation flow as shown

on the gnuradio diagram on figure 7. At first signal is transformed with use of FFT, then the correlated input is

multiplied with complex conjugate of the correlating input. At final stage – inverse FFT and scaling is

performed.

ANNUAL OF NAVIGATION 26/2019

104

Fig.7: Cross correlation flow diagram in gnuradio-companion application.

 To not change the structure of the signal it was correlated with the unit function. Vector length (length of

FFT) was changed between 1024, 4096 and 8192. Measured latency varied between 20 to 31 ms.

DISCUSSION

 Achieved results indicate that proposed method may be a valuable tool for latency testing and optimisation

for software defined radio. Separate measurement trials show good consistency. Observed variations in

nanoseconds range were expected SDR behaviour. The reason for those variations was either the latency

adaptation algorithm implemented in gnuradio or operating system impact. Since problem of the non-

deterministic latency of gnuradio framework was not the main scope of this paper, it was not investigated further

as well latency was not optimised.

 The method itself has some drawbacks, which must be pointed out. First, in poor GNSS satellite visibility

conditions the SDR losses ability to properly bypass radio frequencies with such low amplitudes. Increasing

LNA gain may not be a wanted solution, as the noise of the whole input section will cover the inherently weak

signals. In addition, imperfections of the zero-IF architecture decrease bypassed signal quality and are hard to

counteract. This problem is related only to chosen RF front-end, so it may be addressed with better quality

hardware or better calibration.

CONCLUSIONS

 With proposed method, the latency introduced by SDR can be measured with nanosecond precision. Test

setup was created, validated for proper operation and tested on several gnuradio blocks with success. In authors’

opinion the solution described in the paper may help further optimise performance of software defined radio

platforms.

BIBLIOGRAPHY

[1] Falone R., Stallo C., Gambi E., Spinsante S., "SDR GNSS receivers: A comparative overview of

different approaches," 2014 IEEE Metrology for Aerospace, Benevento, 2014, pp. 326-331. doi:

10.1109/MetroAeroSpace.2014.6865943

[2] Müller M., “Behind the Veil: A Peek at GNU Radio’s Buffer Architecture”, The GNU Radio

Foundation, 5 Jan 2017, www.gnuradio.org/blog/2017-01-05-buffers/

[3] Nuand LLC, “bladeRF USB 3.0 Software Defined Radio”, 23 Mar 2019, www.nuand.com/bladeRF-

brief.pdf,

ANNUAL OF NAVIGATION 26/2019

105

[4] Schmid T., Sekkat O., B. Srivastava M., “An experimental study of network performance impact of

increased latency in software defined radios.”, Proceedings of the second ACM international workshop

on Wireless network testbeds, experimental evaluation and characterization (WinTECH '07), ACM,

New York, 59-66. doi:10.1145/1287767.1287779

[5] Suganuma, H., Suzuki, M., Morikawa, H., “A Buffer Size Tuning Mechanism for Software-Defined

Radios”, IEEE INFOCOM 2012, Hilton Orlando Lake Buena Vista

[6] Truong, N.B., Yu, C. "Investigating Latency in GNU Software Radio with USRP Embedded Series

SDR Platform," 2013 Eighth International Conference on Broadband and Wireless Computing,

Communication and Applications, Compiegne, 2013, pp. 9-14.

doi: 10.1109/BWCCA.2013.11

[7] U-blox AG, “u-blox 8 / u-blox M8 Receiver Description”, 6 Mar 2018, ubx-13003221

