PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kierunki rozwoju i badań termoakustycznych urządzeń chłodniczych z falą stojącą

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The directions of development and research on the thermoacoustic refrigerators with the standing wave
Języki publikacji
PL
Abstrakty
PL
Chłodzenie termoakustyczne to perspektywiczna technologia, która wykorzystuje energię fali akustycznej do transportu ciepła z ośrodka o niskiej do ośrodka o wysokiej temperaturze. Do głównych zalet tej technologii zalicza się dużą niezawodność, prostą konstrukcję urządzeń, a przede wszystkim brak szkodliwych dla środowiska czynników chłodniczych. Z drugiej strony wadą tej technologii jest relatywnie niska sprawność w porównaniu do współczesnych rozwiązań konwencjonalnych. Głównie z tej przyczyny urządzenia termoakustyczne wciąż pozostają w fazie szerokich badań mających na celu poprawę ich wydajności. W artykule tym przedstawiono kierunki obecnie prowadzanych prac. Uwagę zwrócono zwłaszcza na badania eksperymentalne z zakresu wyboru optymalnych parametrów konstrukcyjnych i eksploatacyjnych termoakustycznych urządzeń chłodniczych z falą stojącą. Omówiono również budowę oraz podstawową zasadę działania takich urządzeń.
EN
Thermoacoustic refrigeration is a perspective technology capable of transporting heat from a low temperature source to a high-temperature source by utilizing the acoustic power input. It shows the advantages of high reliability, simple construction and operating without hazardous refrigerants. On the other hand, this technology has disadvantage of relative low efficiency in comparison to conventional solutions. Thus, many efforts have been taken in order to improve the performance of the thermoacoustic coolers. The article presents the review of current research. The main attention is focused on the experimental investigations of the optimal selection of the design and the operational parameters of the thermoacoustic refrigerators with the standing wave. The construction and principles of operations of such devices are also described in this paper.
Rocznik
Tom
Opis fizyczny

Bibliogr. 67 poz., rys., tab.
Twórcy
  • 

Politechnika Warszawska, Wydział Mechaniczny Energetyki i Lotnictwa, Instytut Techniki Cieplnej, ul. Nowowiejska 21/25, 00-665 Warszawa
  • 

Politechnika Warszawska, Wydział Mechaniczny Energetyki i Lotnictwa, Instytut Techniki Cieplnej, ul. Nowowiejska 21/25, 00-665 Warszawa
Bibliografia
  • 
[1] C. Herman and Z. Travnicek, Cool sound: The future of refrigeration? Thermodynamic and heat transfer issues in thermoacoustic refrigeration, Heat Mass Transf., vol. 42, no. 6, pp. 492–500, 2006.
  • [2] N. Rott, Thermoacoustics, Adv. Appl. Mech., vol. 20, pp. 135–175, Jan. 1980.
  • [3] A. A. Putnam and W. R. Dennis, Survey of Organ‐Pipe Oscillations in Combustion Systems, J. Acoust. Soc. Am., vol. 28, no. 2, pp. 246–259, 1956.
  • [4] K. T. Feldman, Review of the literature on Sondhauss thermoacoustic phenomena, J. Sound Vib., vol. 7, no. 1, pp. 71–82, 1968.
  • [5] G. Bisio and G. Rubatto, Sondhauss and Rijke oscillations — thermodynamic analysis, possible applications and analogies, Enery, vol. 24, pp. 117–131, 1999.
  • [6] W. S. Rayleigh, Theory of Sound, London Macmillan, Repr. 1945, New York Dover, 1896.
  • [7] T. Jin, J. Huang, Y. Feng, R. Yang, K. Tang and R. Radebaugh, Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components, Energy, vol. 93, pp. 828–853, 2015.
  • [8] J. Wheatley, T. Hofler, G. W. Swift and A. Migliori, Understanding some simple phenomena in thermoacoustics with applications to acoustical heat engines, Am. J. Phys., vol. 53, no. 2, pp. 147–162, 1985.
  • [9] T. J. Hofler, Thermoacoustic refrigerator design and performance, Ph.D. disseration, Physics Department, University of California, San Diego, 1986.
  • [10] G. W. Swift, Thermoacoustic engines, J. Acoust. Soc. Am., vol. 84, no. 4, pp. 1145–1180, 1988.
  • [11] J. H. Xiao, Thermoacoustic heat transportation and energy transformation Part 1: Formulation of the problem, Cryogenics, vol. 35, no. 1, pp. 15–19, 1995.
  • [12] H. Babaei and K. Siddiqui, Design and optimization of thermoacoustic devices, Energy Convers.Manag., vol. 49, no. 12, pp. 3585–3598, 2008.
  • [13] S. L. Garrett, Thermoacoustic engines and refrigerators, AIP Conf. Proc., vol. 1440, no. 2004, pp. 9–22, 2012.
  • [14] THATEA: THermoAcoustic Technolofy for Energy Applications, Collaborative Project EP7 ENERGY-2008-FET, Energy research Centre of the Netherlands, 2009-2012.
  • [15] S. H. Tasnim, S. Mahmud and R. A. Fraser, Compressible pulsating convection through regular and random porous media: The thermoacoustic case, Heat Mass Transf., vol. 48, no. 2, pp. 329–342, 2012.
  • [16] S. G. Yahya, X. Mao and A. J. Jaworski, Experimental investigation of thermal performance of random stack materials for use in standing wave thermoacoustic refrigerators, Int. J. Refrig., vol. 75, pp. 52–63, 2017.
  • [17] C. Wantha, The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems, Heat and Mass Transf. vol. 54, no. 7, pp. 2153–2161, 2018.
  • [18] M. Wetzel and C. Herman, Design optimization of thermoacoustic refrigerators, Int. J. Refrig., vol. 20, no. 1, pp. 3–21, 1997.
  • [19] A. C. Alcock, L. K. Tartib, and T. C. Jen, Experimental investigation of an adjustable thermoacoustically-driven thermoacoustic refrigerator, Int. J. Refrig., vol. 94, pp. 71–86, 2018.
  • [20] I. Paek, L. Mongeau and J. E. Braun, Performance characterization of a small-capacity thermoacoustic cooler for air-conditioning applications, J. Mech. Sci. Technol., vol. 24, no. 9, pp. 1781–1791, 2010.
  • [21] M. E. H. Tijani, J. C. H. Zeegers, and A. T. A. M. De Waele, Construction and performance of a thermoacoustic refrigerator, Cryogenics, vol. 42, no. 1, pp. 59–66, 2002.
  • [22] F. Jebali, J. V. Lubiez and M. X. François, Response of a thermoacoustic refrigerator to the variation of the driving frequency and loading, Int. J. Refrig., vol. 27, no. 2, pp. 165–175, 2004.
  • [23] N. A. Zolpakar, N. Mohd-Ghazali and R. Ahmad, Experimental investigations of the performance of a standing wave thermoacoustic refrigerator based on multi-objective genetic algorithm optimized parameters, Appl. Therm. Eng., vol. 100, pp. 296–303, 2016.
  • [24] H. Chaitou and P. Nika, Exergetic optimization of a thermoacoustic engine using the particle swarm optimization method, Energy Convers. Manag., vol. 55, pp. 71–80, 2012.
  • [25] R. V. Rao, K. C. More, J. Taler and P. Ocłoń, Multi-objective optimization of thermo-acoustic devices using teaching-learning-based optimization algorithm, Sci. Technol. Built Environ., vol. 23, no. 8, pp. 1244–1252, Nov. 2017.
  • [26] N. A. Zolpakar, N. Mohd-Ghazali and M. Hassan El-Fawal, Performance analysis of the standing wave thermoacoustic refrigerator: A review, Renew. Sustain. Energy Rev., vol. 54, pp. 626–634, 2016.
  • [27] M. E. H. Tijani, J. C. H. Zeegers and A. T. A. M. de Waele, The optimal stack spacing for thermoacoustic refrigeration, J. Acoust. Soc. Am., vol. 112, no. 1, pp. 128–133, 2002.
  • [28] I. Setiawan, A. Bambang Setio Utomo M. Katsuta and M. Nohtomi, Experimental study on the influence of the porosity of parallel plate stack on the temperature decrease of a thermoacoustic refrigerator, J. Phys. Conf. Ser., vol. 423, no. 1, 2013.
  • [29] A. W. Avent and C. R. Bowen, Principles of thermoacoustic energy harvesting, Eur. Phys. J. Spec. Top., vol. 224, no. 14–15, pp. 2967–2992, 2015.
  • [30] J. Bosel, C. Trepp and J. G. Fourie, An alternative stack arrangement for thermoacoustic heat pumps and refrigerators, J. Acoust. Soc. Am., vol. 106, no. 2, pp. 707–715, 1999.
  • [31] N. M. Hariharan, P. Sivashanmugam and S. Kasthurirengan, Experimental investigation of a thermoacoustic refrigerator driven by a standing wave twin thermoacoustic prime mover, Int. J.Refrig., vol. 36, no. 8, pp. 2420–2425, 2013.
  • [32] I. Setiawan and A. B. Setia-Utomo, The Influence of the Length and Position of the Stack on the Performance of a Thermoacoustic Refrigerator, Disseration, Gadjah Mada Univesrity, Indonesia, 2013.
  • [33] G. W. Swift, Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators, J. Acoust. Soc. Am., vol. 113, no. 5, pp. 2379–2381, 2003.
  • [34] M. El Hassan Tijani, Loudspeaker-driven thermo-acousic refrigeration, Ph.D. disseration, Eindhoven University of Technoloy, The Netherlands, 2001.
  • [35] J. Kajurek, A. Rusowicz and A. Grzebielec, The Influence of Stack Position and Acoustic Frequency on the Performance of Thermoacoustic Refrigerator with the Standing Wave, Arch. Thermodyn., vol. 38, no. 4, pp. 89–107, 2017.
  • [36] M. Akhavanbazaz, M. H. K. Siddiqui and R. B. Bhat, The impact of gas blockage on the performance of a thermoacoustic refrigerator, Exp. Therm. Fluid Sci., vol. 32, no. 1, pp. 231–239, 2007.
  • [37] Y. T. Kim, M. G. Kim and S. J. Suh, Optimum Positions of a Stack in a Thermoacoustic Heat Pump, J. Korean Phys. Soc., vol. 36, no. 5, pp. 279–286, 2000.
  • [38] J. Kajurek, A. Rusowicz and A. Grzebielec, Design and simulation of a small capacity thermoacoustic refrigerator, SN Appl. Sci., no. 1:579, 2019.
  • [39] M. E. H. Tijani, J. C. H. Zeegers, and A. T. A. M. De Waele, Design of thermoacoustic refrigerators, Cryogenics, vol. 42, no. 1, pp. 49–57, 2002.
  • [40] Y. A. Cengel and A. M. Boles, Thermodynamics - An Engineering Approach, 5th Edition, McGraw Hill, 2006.
  • [41] M. E. H. Tijani, J. C. H. Zeegers and A. T. A. M. de Waele, Prandtl number and thermoacoustic refrigerators, J. Acoust. Soc. Am., vol. 112, no. 1, pp. 134–143, 2002.
  • [42] S. H. Tasnim, S. Mahmud and R. A. Fraser, Effects of variation in working fluids and operating conditions on the performance of a thermoacoustic refrigerator, Int. Commun. Heat Mass Transf., vol. 39, no. 6, pp. 762–768, 2012.
  • [43] J. R. Belcher, W. V. Slaton, R. Raspet, H. E. Bass and J. Lightfoot, Working gases in thermoacoustic engines, J. Acoust. Soc. Am., vol. 105, no. 5, pp. 2677–2684, 1999.
  • [44] A. Piccolo and G. Cannistraro, Convective heat transport along a thermoacoustic couple in the transient regime, Int. J. Therm. Sci., vol. 41, no. 11, pp. 1067–1075, 2002.
  • [45] J. A. Adeff, T. J. Hofler, A. A. Atchley and W. C. Moss, Measurements with reticulated vitreous carbon stacks in thermoacoustic prime movers and refrigerators, vol. 104, no. 1, pp. 32–38, 1998.
  • [46] D. Agustina and S. Purnama, Experimental investigation on the effect of resonator shapes on the temperature characteristic of thermoacoustic cooling device, IOP Conf. Series: Materials Science and Engineering, vol. 539, no. 1, pp. 1–6, 2019.
  • [47] M. A. Alamir, Experimental study of the stack geometric parameters effect on the resonance frequency of a standing wave thermoacoustic refrigerator, Int. J. of Green Energy, vol. 16, no. 8, pp. 639–651, 2019.
  • [48] A.C. Alock, L.K. Tartibu and T.C. Jen, Experimental Investigation of Ceramic Substrates in Standing Wave Thermoacoustic Refrigerator, Procedia Manufacturing, vol. 7, pp. 79-85, 2017.
  • [49] A. A. Atchley, T. J. Hofler, M. L. Muzzerall, M. D. Kite and C. Ao, Acoustically generated temperature gradients in short plates, J. Acoust. Soc. Am., vol. 88, no. 1, pp. 251–263, 1990.
  • [50] K. A. Babu and P. Sherjin, Experimental investigations of the performance of a thermoacoustic refrigerator based on the Taguchi method, J. of Mech. Sci. and Tech., vol. 32, no. 2, pp. 929–935,2018.
  • [51] B. Chen, Y. A. Abakr and M. Al-atabi, Investigation of an atmospheric pressure thermoacoustic cooling system by varying its operating frequency, J. of Eng. Sci. and Tech., vol. 8, no. 3, pp. 364-371, 2013.
  • [52] G. Allesina, An experimental analysis of a stand-alone standing-wave thermoacoustic refrigerator, Int. J. Energy Environ. Eng., vol. 5, no. 1, pp. 1–9, 2014.
  • [53] J. Kajurek and A. Rusowicz, Performance analysis of the thermoacoustic refrigerator with the standing wave and air as a working fluid, E3S Web of Conferences, vol. 44, no. 63, 2018.
  • [54] P. Lotton, P. Blanc-benon, M. Bruneau, V. Gusev, S. Duffourd, M. Mirnov, G. Poignand, Transient temperature profile inside thermoacoustic refrigerators, Int. J. Heat Mass Transf., vol. 52, no. 21–22, pp. 4986–4996, 2009.
  • [55] A. Nathad, F. Ahmed, M. O. Khalid, R. Kumar, H. Hafeez, Experimental Analysis of an Economical Lab Demonstration Prototype of a Thermo Acoustic Refrigerator ( TAR ), Energy Procedia, vol. 157, pp. 343–354, 2019.
  • [56] B. R. Nayak, G. Pundarika and B. Arya, Influence of stack geometry on the performance of thermoacoustic refrigerator, Sadhana - Acad. Proc. Eng. Sci., vol. 42, no. 2, pp. 223–230, 2017.
  • [57] E. C. Nsofor and A. Ali, Experimental study on the performance of the thermoacoustic refrigerating system, Appl. Therm. Eng., vol. 29, no. 13, pp. 2672–2679, 2009.
  • [58] N. Putra and D. Agustina, Influence of stack plate thickness and voltage input on the performance of loudspeaker-driven thermoacoustic refrigerator, J. Phys. Conf. Ser., vol. 423, no. 1, 2013.
  • [59] Q. Tu and V. Gusev, Experimental and theoretical investigation on frequency characteristic of loudspeaker-driven thermoacoustic refrigerator, Cryogenics, vol. 45, pp. 739–746, 2006.
  • [60] D. A. Russell and P. Weibull, Tabletop thermoacoustic refrigerator for demonstrations, Am. J. Phys., vol. 70, no. 12, pp. 1231–1233, 2002.
  • [61] C. A. A. Atis, M. Sarker and M. Ehsan, Study of thermoacoustic phenomenon in a Rijke tube, Procedia Eng., vol. 90, pp. 569–574, 2014.
  • [62] I. Setiawan, A. B. Setio-utomo, M. Nohtomi and M. Katsuta, Experimental Study on Thermoacoustic Cooling System with Two Stacks in a Straight Resonator Tube, 10ème Congrès Français d'Acoustique Lyon, 2010.
  • [63] L. K. Tartibu, Maximum cooling and maximum efficiency of thermoacoustic refrigerators, Heat Mass Transf., vol. 52, no. 1, pp. 95–102, 2016.
  • [64] S. H. Tasnim, S. Mahmud and R. A. Fraser, Measurements of thermal field at stack extremities of a standing wave thermoacoustic heat pump, Front. Heat Mass Transf., vol. 2, no. 1, pp. 1–10, 2011.
  • [65] K. Amirin and M. Yulianto, Experimental study of thermoacoustic cooling with parallel-plate stack in different distances, IOP Conf. Series: Materials Science and Engineering, vol. 539, 2019.
  • [66] C. Wantha and K. Assawamartbunlue, The impact of the resonance tube on performance of a thermoacoustic stack, Front. Heat Mass Transf., vol. 2, no. 4, pp. 1–8, 2011.
  • [67] C. Wantha and K. Assawamartbunlue, Experimental investigation of the effects of driver housing and resonance tube on the temperature difference across a thermoacoustic stack, Heat Mass Transf. vol. 49, no. 6, pp. 887–896, 2013.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90820c14-12be-4091-a134-964b8d82b8ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.