PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimisation of the performance of a pyrolysis reactor for G50 chips

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of any industrial plant, which is dealing in the energy sector, is to maximise the revenue generation at the lowest production cost. It can be carried out either by optimizing the manpower or by improving the performance index of the overall unit. This paper focuses on the optimisation of a biomass power plant which is powered by G50 hardwood chips (Austrian standard for biomass chips). The experiments are conducted at different operating conditions. The overall effect of the enhanced abilities of a reactor on the power generation is examined. The output enthalpy of a generated gas, the gas yield of a reactor and the driving mechanism of the pyrolysis are examined in this analysis. The thermal efficiency of the plant is found to vary from 44 to 47% at 400°C, whereas it is 44 to 48% for running the same unit at 600°C. The transient thermal condition is solved with the help of the lumped capacitance method. The thermal efficiency of the same design, within the constraint limit, is enhanced by 5.5%, whereas the enthalpy of the produced gas is magnified by 49.49% through nonlinear optimisation. The temperature of biomass should be homogenous, and the ramping rate must be very high. The 16% rise in temperature of the reactor is required to reduce the mass yield by 20.17%. The gas yield of the reactor is increased by up to 85%. The thermal assessment indicates that the bed is thermally thin, thus the exterior heat transfer rate is a deciding factor of the pyrolysis in the reactor.
Słowa kluczowe
Rocznik
Strony
245--263
Opis fizyczny
Bibliogr. 34 poz., rys., wykr., wz.
Twórcy
  • Institute of Process Engineering, Szent István University, Páter Károly 1., 2100, Gödöllő, Hungary
autor
  • Department of Mathematics, Statistics and Computer Science, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
Bibliografia
  • [1] Mohan D., Pittman C.U., Steele P.H.: Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 20(2006), 3, 848–889. DOI: 10.1021/ef0502397
  • [2] Xu C. et al.: Energy and exergy analysis of solar power tower plants. Appl. Therm. Eng. 31(2011), 17–18, 3904–3913. DOI: 10.1016/j.applthermaleng.2011.07.038
  • [3] Bridgwater A.V., Evans G.D.: An assessment of thermochemical conversion systems for processing biomass and refuse. Rep. ETSU B/T1/00207, 1993.
  • [4] Dhaundiyal A., Gupta V.K.: The analysis of pine needles as a substrate for gasification. J. Water Energ. Environ. 15(2014), 73–81. DOI:10.3126/hn.v15i0.11299
  • [5] Antal M.J. et al.: Review of methods for improving the yield of charcoal from biomass. Energy Fuels 4(1990), 3, 221–225. DOI: 10.1021/ef00021a001
  • [6] Chaiwat W. et al.: Examination of degree of cross-linking for cellulose precursors pretreated with acid/hot water at low temperature. Ind. Eng. Chem. Res. 47(2008), 16, 5948–5956, DOI: 10.1021/ie800080u
  • [7] Sierra R. et al.: Producing fuels and chemicals from lignocellulosic biomass. Chem. Eng. Prog. 104(2008), 8, S10–S18.
  • [8] Graham R. et al.: The role of temperature in the fast pyrolysis of cellulose and wood. Ind. Eng. Chem. Res. 27(2005), 1, 8–15. DOI: 10.1021/ie00073a003
  • [9] Ricky Chan W. C., Kelbon M., Krieger-Brockett B.: Single-particle biomass pyrolysis: Correlations of reaction products with process conditions. Ind. Eng. Chem. Res. 27(1988), 12, 2261–2275. DOI: 10.1021/ie00084a012
  • [10] Kung H.C.: A mathematical model of wood pyrolysis. Combust. Flame 18(1972), 2, 185–195. DOI: 10.1016/S0010-2180(72)80134-2
  • [11] Maa P.S., Bailie R.C.: Influence of particle sizes and environmental conditions on high temperature pyrolysis of cellulosic material — I (Theoretical). Combust. Sci. Technol. 7(1973), 6, 257–269. DOI: 10.1080/00102207308952366
  • [12] Pyle D.L., Zaror C.A.: Heat transfer and kinetics in the low temperature pyrolysis of solids. Chem. Eng. Sci. 39(1984), 1, 147–158. DOI: 10.1016/0009-2509(84)80140-2
  • [13] Kothari V., Antal M.J.: Numerical studies of the flash pyrolysis of cellulose. Fuel 64(1985), 11, 1487–1494. DOI: 10.1016/0016-2361(85)90361-8
  • [14] Simmons G.M., Gentry M.: Particle size limitations due to heat transfer in determining pyrolysis kinetics of biomass. J. Anal. Appl. Pyrol. 10(1986), 2, 117–127. DOI: 10.1016/0165-2370(86)85011-2
  • [15] Demirbas A.: Combustion characteristics of different biomass fuels. Prog. Energ. Combust. Sci. (2004), 219–230. DOI: 10.1016/j.pecs.2003.10.004
  • [16] Moran M.J., Sciubba E.: Exergy Analysis: Principles and Practice. J. Eng. Gas Turb. Power 116(2008), 2, 285–290. DOI: 10.1115/1.2906818
  • [17] Kotas T.J.: Exergy analysis of simple processes. In: The Exergy Method of Thermal Plant Analysis, Krieger 1995, 99–161. DOI: 10.1016/b978-0-408-01350-5.50011-8
  • [18] Wall G., Gong M.: Exergy analysis versus pinch technology. In: Efficiency, Costs, Optimization, Simulation and Environmental Aspects of Energy Systems (P. Alvfors, Ed.). Royal Institute of Technology, Stockholm 1996, 451–455.
  • [19] McIlvried H.G. et al.: Exergy and pinch analysis of an advanced ammonia-water coal-fired power cycle. In: American Society of Mechanical Engineers, Advanced Energy Systems Division. AES 38(1998), 197–199.
  • [20] Habib M.A., Zubair S.M.: Second-law-based thermodynamic analysis of regenerative-reheat Rankine-cycle power plants. Energy 17(1992), 3, 295–301. DOI:10.1016/0360-5442(92)90057-7
  • [21] Horlock J.H., Young J.B., Manfrida G.: Exergy analysis of modern fossil-fuel power plants. J. Eng. Gas Turb. Power 122(2002), 1, 1–7. DOI: 10.1115/1.483170
  • [22] Nishio M. et al.: A thermodynamic approach to steam-power system design. Ind. Eng. Chem. Process Des. Dev. 19(1980), 2, 306–312. DOI: 10.1021/i260074a019
  • [23] Grimaldi C.N., Bidini G.: Using exergy analyses on circulating fluidized bed combustors. In: Proc. A Future for Energy, Florence World Energy Res. Symp., Firenze, 1990, 181–19.
  • [24] Kwak H.Y., Kim D.J., Jeon J.S.: Exergetic and thermoeconomic analyses of power plants. Energy 28(2003), 4, 343–360. DOI: 10.1016/S0360-5442(02)00138-X
  • [25] Jin H. et al.: Exergy evaluation of two current advanced power plants: Supercritical steam turbine and combined cycle. J. Energ. Resour. Technol. 119(2008), 4, 250–256. DOI: 10.1115/1.2794998
  • [26] Silvestri G.J., Bannister R.L., Fujikawa T., Hizume A.: Optimization of advanced steam condition power plants. J. Eng. Gas Turb. Power 114(1992), 612– 620.
  • [27] Ghetti P. et al.: Coal combustion. Correlation between surface area and thermogravimetric analysis data. Fuel 64(1985), 7, 950–955. DOI: 10.1016/0016-2361(85)90150-4
  • [28] Ghetti P.: DTG combustion behaviour of coal. Correlations with proximate and ultimate analysis data. Fuel 65(1986), 5, 636–639. DOI: 10.1016/0016-2361(86)90356-X
  • [29] Tartarelli R. et al.: DTG combustion behaviour of charcoals. Fuel 66(1987), 12, 1737–1738. DOI: 10.1016/0016-2361(87)90373-5
  • [30] Nag P.K.: Power Plant Engineering (IIIrd Edn.). 2002. DOI: 10.1007/978-1-4613-0427-2.
  • [31] Holman J.P.: Heat Transfer (10th Edn.). The McGraw-Hill Companies 2010. DOI:10.1603/EN11245
  • [32] Lewellen P.C., Peters W.A., Howard J.B.: Cellulose pyrolysis kinetics and char formation mechanism. Symp. (Int.) Combust. 16(1977), 1, 1471–1480. DOI:10.1016/S0082-0784(??)80429-3
  • [33] Slopiecka K., Bartocci P., Fantozzi F.: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energ. 97(2012), 491–497. DOI:10.1016/j.apenergy.2011.12
  • [34] Patel S.S., Lanjewar A.: Exergy based analysis of solar air heater duct with Wshaped rib roughness on the absorber plate. Arch. Thermodyn. 402019, 4, 21–48. DOI: 10.24425/ather.2019.130006
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90742d98-b30b-4e1a-bb81-092f2c5cb4bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.