PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Pearson Type IV distribution function employed to describe the parametric flow hydrograph

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The gamma distribution functions with one shape parameter, employed to describe the parametric hydrograph, proved ineffective for the upper Vistula River and the middle Oder River water regions. It was therefore necessary to fnd a diferent function. The Pearson Type IV distribution functions proposed by Strupczewski with one and two shape parameters were analyzed for their applicability based on the data acquired from 60 water gauges, 30 of which were located on the Vistula River and the other 30 were on the Oder River. The shape parameter (parameters) and the time of rising limb were optimized based on the calculated hydrograph widths at 50% and 75% of peak flow (W50 and W75) as well as on the skewness coefcient s. The calculated parametric hydrographs were compared with the nonparametric input hydrographs with regard to the closeness of their volumes and the position of their centers of gravity. Both Pearson Type IV distribution functions proved to ft well. However, the function with two shape parameters did not yield the exact solution since the condition of the assumed objective function was met by a very large group of pairs of m and n shape parameters. It was therefore assumed that the recommended function is the Pearson Type IV distribution with one shape parameter. This function has an additional advantage of having an infection point located between the W50 and W75, which allows to use the exponential function for the rising or recession limb that better describes either part of the hydrograph.
Czasopismo
Rocznik
Strony
1419--1433
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Department of Water Engineering and Water Management, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
  • Department of Water Engineering and Water Management, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • 1. Apel H, Thieken AH, Merz B, Blöschl G (2006) A probabilistic modelling system for assessing. Flood Risks Nat Hazards 38:295–308
  • 2. Archer D, Foster M, Faulkner D, Mawdsley H (2000) The synthesis of design flood hydrographs. In: Proceedings of flooding: risks and reactions CIWEM/ICE conference, London, pp 45–57
  • 3. Aziz MA, Shalaby NA, El-Shafie OM, Mahdy AT, Nishida A (2006) Comparison between the shapes of lactation curve of Egyptian buffalo milk yield estimated by the incomplete gamma function and a new model. Livestock Res Rural Dev 18(5):59
  • 4. Bayliss AC (1999) Catchment descriptors volume 5 of the flood estimation handbook. Center for Scology and Hydrology, p 130
  • 5. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250
  • 6. Challa SNM (1997) Water resources engineering: principles and practice. New Age International (P) Limited, New Delhi, p 174
  • 7. Ciepielowski A (1987) Statistical Methods of determining typical winter and summer hydrographs for ungauged watersheds. In: International symposium on hood frequency and risk analyses. Department of Civil Engineering, Louisiana State University, Baton Rouge, pp 117–124
  • 8. Ciepielowski A (2001) Relationships between selected elements of the flood hydrographs in rivers. J Water Land Dev 5:89–105
  • 9. De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to check adequacy of dam spillway. J Hydrol Eng 10:50–57
  • 10. Elshorbagy A, Simonovic SP, Panu US (2000) Performance evaluation of artificial neural networks for runoff prediction. J Hydrol Eng 5:424–427
  • 11. Ernst J, Dewals BJ, Detrembleur S, Archambeau P (2010) Micro-scale flood risk analysis based on detailed 2D hydraulic modelling and high resolution geographic data. Nat Hazards 55:181–209
  • 12. Gądek W, Środula A (2014) The evaluation of the design flood hydrographs determined with the hydroproject method in the gauged catchments. Infrastruktura I Ekologia Terenów Wiejskich Nr 2014/IV [3 (Dec 2014)], pp 1355–1366
  • 13. Gądek W, Tokarczyk T (2015) Determining Hypothetical floods in the odra basin by means of the Cracow method and by volume formula infrastructure and ecology of rural areas Nr IV/4 2015, pp 1507–1519
  • 14. Gądek W, Tokarczyk T, Środula A (2016) Estimation of parametric flood hydrograph determined by means of Strupczewski method in the Vistula and Odra catchments. J Water Land Dev 31(X–XII):43–51
  • 15. Gądek W, Baziak B, Tokarczyk T (2017a) Nonparametric design hydrograph in the gauged cross sections of the Vistula and Odra catchment. Meteorol Hydrol Water Manag 5(1):53–61
  • 16. Gądek W, Baziak B, Tokarczyk T (2017b) Strupczewski method for parametric design hydrographs in ungauged cross-sections. Arch Hydro-Eng Environ Mech 64(1):49–67
  • 17. Hattermann FF, Kundzewicz ZW, Huang S, Vetter T, Gerstengarbe F-W, Werner P (2013) Climatological drivers of changes in flood hazard in Germany. Acta Geophys 61(2):463–477
  • 18. Hayashi T, Nagamine Y, Nishida A (1986) A vibration model to describe the lactation curve of a dairy cow. Jpn J Zootech Sci 57:471–478
  • 19. Jonkman SN, Vrijling JK (2008) Loss of life due to floods. J Flood Risk Manag 1(1):43–56
  • 20. McEnroe BM (1992) Sizing stormwater detention reservoirs to reduce peak flow W: hydraulic engineering: saving a threatened resource. In: Search of solutions conference proceeding paper Reston, VA. ASCE, pp 719–724
  • 21. Mills P, Oliver Nicholson O, Reed D (2014) Physical catchment descriptors based on research reports by compass informatics. DWRconsult and OPW, p 90
  • 22. Mioduszewski W (2014) Small (natural) water retention in rural areas. J Water Land Dev 20:19–29
  • 23. Nash JE (1957) The form of the instantaneous unit hydrograph In: Proceedings of Toronto General Assembly, IASH Publ No 45, pp 114–121
  • 24. O’Connor K, Goswami M, Faulkner D (2014) Flood studies update. Technical Research Report, Volume III, Hydrograph Analysis, p 186
  • 25. Ozga-Zielińska M, Gądek W, Książyński K, Nachlik E, Szczepanek R (2002) Mathematical model of rainfall-runoff transformation. In: Singh VP, Frevert DK (eds) WISTOO mathematical models of large watershed hydrology. Water Resources Publications, LLC, Littleton, pp 811–860
  • 26. Pietrusiewicz I, Cupak A, Wałęga A, Michalec B (2014) The use of NRCS synthetic unit hydrograph and wackermann conceptual model in the simulation of a flood wave in an uncontrolled catchment. J Water Land Dev 23:53–59
  • 27. Reitz W, Kreps H (1945) Näherungsverfahren zur Berechnung des erforderlichen. Stauraumes für Zwecke des Hochwasserschutzes Deutsche, Wasserwirtschaft, p T1
  • 28. Snyder FF (1938) Synthetic unit-graphs. Trans Am Geophys Union 19:447–454
  • 29. Serinaldi F, Grimaldi, S (2011) Synthetic design hydrographs based on distribution functions with finite support. J Hydrol Eng 101061/(ASCE) HE1943-55840000339, 434–446
  • 30. Strupczewski W (1964) Równanie Fali Powodziowej (equation of flood crest). Wiadomości Służby Hydrologicznej i Meteorologicznej 2(57):35–58
  • 31. Strupczewski W, Bogdanowicz E, Kochanek K (2013) Discussion of “Synthetic design hydrographs based on distribution functions with finite support” by Francesco Serinaldi and Salvatore Grimaldi. J Hydrol Eng 18(1):121–126
  • 32. Vrijling JK, Van Hengel W, Houben RJ (1998) Acceptable risk as a basis for design. Reliab Eng Syst Saf 59:141–150
  • 33. Wałęga A (2013) Application of HEC-HMS programme for the reconstruction of a flood event in an uncontrolled basin. J Water Land Dev 18:13–20
  • 34. Zeleňáková M, Gaňová L, Purcz PM (2017) Mitigation of the adverse consequences of floods for human life, infrastructure, and the environment. Nat Hazards Rev. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000255
  • 35. Zevenbergen C, Cashman A, Evelpidou N, Pasche E, Garvin S, Ashley R (2011) Urban flood management. CRC Press, London
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9072dc99-5797-4db7-9185-d0e65ac1ec62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.