
Abstract

ty for inserted into elastic space of cylinder with excellent mechanical properties of the medium (Fig. 1).

\square
\square
\qquad
\square

The source of non-stationary processes in composite is high intensity force load of the inner surface of the cylinder.

In order to identify the stress and strain field in the composite, assuming that on the surfaces of cylinder and elastic medium conditions of ideal mechanical contact are true, we should find the solution to the initial-boundary problem:
$\rho^{-1} \partial_{\rho}\left(\rho \partial_{\rho} u^{(i)}\right)-\rho^{-2} u^{(i)}-\tilde{c}_{i}^{2} \partial_{\tau}^{2} u^{(i)}=0, \quad i=1,2 ;$
$\sigma_{\rho \rho}^{(1)}=-p^{*}(\tau), \rho=\rho_{0} ; \quad u^{(2)}=0, \rho \rightarrow \infty ;$
$u^{(1)}=u^{(2)}, \sigma_{\rho \rho}^{(1)}=\sigma_{\rho \rho}^{(2)} \quad \rho=1 ;$
$u^{(i)}=\partial_{\tau} u^{(i)}=0, \quad \tau=0, \quad i=1,2$,
where: $\rho=r / R_{1}$ - non-dimensional radial variable of the cylindrical coordinate system; $\mathrm{R}_{0}, \mathrm{R}_{1}$ - accordingly, radiuses of the inner and the external surface of the cylinder, $u^{(i)}(\rho, \tau)$ - displacment to the radial motion ($i=1$ - in cylinder, $i=2$ in elastic medium; $\tilde{c}_{i}=\frac{c_{1}}{c_{i_{1}}}, \tau=\frac{c_{1} t}{R_{1}}$ - non-dimensional time; $c_{i, 1}$ - the longitudinal waves propagation velocities in the material of cylinder other elastic medium; $\sigma_{\rho \rho}^{(i)}(\rho, \tau)$ - radial stresses in the cylinder other elastic medium, that are determined by Hook's law:
$\sigma_{\rho \rho}^{(i)}=\mu_{i}\left[\kappa_{i}^{2} \partial_{\rho} u^{(i)}+\left(\kappa_{i}^{2}-2\right) \frac{u^{(i)}}{\rho}\right]$,
where: $\kappa_{i}^{2}=\frac{\lambda_{i}+2 \mu_{i}}{\mu_{i}} ; \lambda_{i}, \mu_{i}-$ elastic constants.

3. SOLUTION OF THE PROBLEM

We will search for the problem (1)-(4) solution in the class of functions that belong to the space $L_{2}(0, \infty ; \lambda \exp (-\lambda \tau))$, i.e. for which the condition:
$\left\|u^{(i)}(\rho, \tau)\right\|^{2}=\lambda \int_{0}^{\infty} \exp (-\lambda \tau)\left|u^{(i)}(\rho, \tau)\right|^{2} d \tau<\infty$
is true, where $\lambda>0$ some number (scaled multiplier). Then, the functions $u^{(i)}(\rho, \tau)$ can be showed as a series of Laguerre polynomials:
$u^{(i)}(\rho, \tau)=\lambda \sum_{n=0}^{\infty} u_{n}^{(i)}(\rho) L_{n}(\lambda \tau)$,
where:
$u_{n}^{(i)}(\rho)=\int_{0}^{\infty} \exp (-\lambda \tau) u^{(i)}(\rho, \tau) L_{n}(\lambda \tau) d \tau$,
and $\mathrm{L}_{\mathrm{n}}(\lambda \tau)$ - Laguerre polynomials.
Further we will consider the formula (7) as integral transform of the function, and a series (6) - as the inversion formula of this transform.

Now we multiply the equation (1) on the conversion core $\exp (-\lambda \tau) L_{n}(\lambda \tau)$ and integrate the obtained expression according the variable τ in the interval $[0, \infty)$. Accounting the equation (7) and the initial conditions (4), after the integration by parts we will obtain:

$$
\begin{align*}
& \rho^{-1} d_{\rho}\left(\rho d_{\rho} u_{n}^{(i)}\right)-\rho^{-2} u_{n}^{(i)}-\omega_{i}^{2} u_{n}^{(i)}= \\
& \quad=\omega_{i}^{2} \sum_{m=0}^{n-1}(n-m+1) u_{m}^{(i)}, \quad i=1,2 ; \tag{8}
\end{align*}
$$

$\sigma_{\rho \rho, n}^{(1)}=-p_{n}^{*}, \rho=\rho_{0}, u_{n}^{(2)}=0, \rho \rightarrow \infty$;
$u_{n}^{(1)}=u_{n}^{(2)}, \sigma_{\rho \rho, n}^{(1)}=\sigma_{\rho \rho, n}^{(2)}, \rho=1$,
where $\omega_{i}=\lambda \tilde{c}_{i}$.
The solution to the triangular sequence of ordinary differential equations can be written as on algebraically convolution:
$u_{n}^{(i)}(\rho)=\sum_{j=0}^{n}\left[C_{n-j}^{(i)} G_{j}\left(\omega_{i} \rho\right)+D_{n-j}^{(i)} W_{j}\left(\omega_{i} \rho\right)\right]$.
Here are linearly independent fundamental solutions of the sequence (8), which we can represent as:
$G_{j}(x)=\sum_{p=0}^{j} a_{j, p} \frac{(x)^{p}}{2^{p} p!} \mathrm{I}_{p+1}(x) ;$
$W_{j}(x)=\sum_{p=0}^{j} a_{j, p} \frac{(-x)^{p}}{2^{p} p!} \mathrm{K}_{p+1}(x)$,
where: $I_{p}(x)$ and $K_{p}(x)$ - Bessel's modified functions, and coefficients $\mathrm{a}_{\mathrm{j}, \mathrm{p}}$ satisfy recurrence relations:
$a_{j, p+1}=\sum_{k=p}^{j-1}(j-k+1) a_{k, p}$,
$j=1,2, \ldots, p=\overline{0, j-1}$.
Accounting the conditions on infinity (2) and a view of fundamental solutions (12), we obtain that:

$$
\begin{equation*}
C_{j}^{(2)} \equiv 0, \quad j=0,1,2, \ldots \tag{14}
\end{equation*}
$$

The direct solutions stuffing (11) into conditions (9)-(10) leads to correlations, which after some transformations can be represented as recurrent sequences of systems of linear algebraic equations:

$$
\left(\begin{array}{lll}
b_{1,1} & b_{1,2} & 0 \tag{15}\\
b_{2,1} & b_{2,2} & b_{2,3} \\
b_{3,1} & b_{3,2} & b_{3,3}
\end{array}\right)\left(\begin{array}{l}
C_{n}^{(1)} \\
D_{n}^{(1)} \\
D_{n}^{(2)}
\end{array}\right)=\left(\begin{array}{l}
H_{n, 1} \\
H_{n, 2} \\
H_{n, 3}
\end{array}\right),
$$

where:
$b_{1,1}=\kappa_{1}^{2} \omega_{1} I_{0}\left(\omega_{1} \rho_{0}\right)-\frac{2}{\rho_{0}} I_{1}\left(\omega_{1} \rho_{0}\right) ; b_{1,2}=-\kappa_{1}^{2} \omega_{1} K_{0}\left(\omega_{1} \rho_{0}\right)-\frac{2}{\rho_{0}} K_{1}\left(\omega_{1} \rho_{0}\right) ; b_{2,1}=I_{1}\left(\omega_{1}\right) ; b_{2,2}=K_{1}\left(\omega_{1}\right) ; b_{2,3}=-K_{1}\left(\omega_{2}\right) ;$
$b_{3,1}=\kappa_{1}^{2} \omega_{1} I_{0}\left(\omega_{1}\right)-2 I_{1}\left(\omega_{1}\right) ; b_{3,2}=-\kappa_{1}^{2} \omega_{1} K_{0}\left(\omega_{1}\right)-2 K_{1}\left(\omega_{1}\right) ; b_{3,3}=\tilde{\mu}_{2}\left(\kappa_{2}^{2} \omega_{2} K_{0}\left(\omega_{2}\right)+2 K_{1}\left(\omega_{2}\right)\right), \tilde{\mu}_{2}=\mu_{2} / \mu_{1} ;$
$H_{1, n}=-\frac{p_{n}}{\mu_{1}}-\sum_{j=1}^{n} C_{n-j}^{(1)}\left[\kappa_{1}^{2} G_{j}^{\prime}\left(\omega_{1} \rho_{0}\right)+\left(\kappa_{1}^{2}-2\right) G_{j}\left(\omega_{1} \rho_{0}\right)\right]-\sum_{j=1}^{n} D_{n-j}^{(1)}\left[\kappa_{1}^{2} W_{j}^{\prime}\left(\omega_{1} \rho_{0}\right)+\left(\kappa_{1}^{2}-2\right) W_{j}\left(\omega_{1} \rho_{0}\right)\right] ;$
$H_{2, n}=\sum_{j=1}^{n}\left[D_{n-j}^{(2)} W_{j}\left(\omega_{2}\right)-C_{n-j}^{(1)} G_{j}\left(\omega_{1}\right)-D_{n-j}^{(1)} W_{j}\left(\omega_{1}\right)\right] ; H_{3, n}=\tilde{\mu}_{2} \sum_{j=1}^{n} D_{n-j}^{(2)}\left[\kappa_{2}^{2} W_{j}^{\prime}\left(\omega_{2}\right)+\left(\kappa_{2}^{2}-2\right) W_{j}\left(\omega_{2}\right)\right]-$
$-\sum_{j=1}^{n} C_{n-j}^{(1)}\left[\kappa_{1}^{2} G_{j}^{\prime}\left(\omega_{1}\right)+\left(\kappa_{1}^{2}-2\right) G_{j}\left(\omega_{1}\right)\right]-\sum_{j=1}^{n} D_{n-j}^{(1)}\left[\kappa_{1}^{2} W_{j}^{\prime}\left(\omega_{1}\right)+\left(\kappa_{1}^{2}-2\right) W_{j}\left(\omega_{1}\right)\right]$,
$G_{j}^{\prime}\left(\omega_{i} \rho\right)=\sum_{p=0}^{j} a_{j, p} \frac{\left(\omega_{i} \rho\right)^{p}}{2^{p} p!}\left[\omega_{i} I_{p}\left(\omega_{i} \rho\right)-\frac{I_{p+1}\left(\omega_{i} \rho\right)}{\rho}\right], W_{j}^{\prime}\left(\omega_{i} \rho\right)=\sum_{p=0}^{j} a_{j, p} \frac{\left(-\omega_{i} \rho\right)^{p}}{2^{p} p!}\left[-\omega_{i} K_{p}\left(\omega_{i} \rho\right)-\frac{K_{p+1}\left(\omega_{i} \rho\right)}{\rho}\right]$
From (15) obtain the recurrent solution:
$D_{n}^{(2)}=\frac{\left(H_{n, 1} b_{2,1}-H_{n, 2} b_{1,1}\right)\left(b_{1,2} b_{3,1}-b_{3,2} b_{1,1}\right)-\left(H_{n, 1} b_{3,1}-H_{n, 3} b_{1,1}\right)\left(b_{1,2} b_{2,1}-b_{2,2} b_{1,1}\right)}{b_{1,1}\left\{b_{2,3}\left(b_{3,2} b_{1,1} b_{1,2} b_{3,1}\right)+b_{3,3}\left(b_{1,2} b_{2,1}-b_{2,2} b_{1,1}\right)\right\}} ; D_{n}^{(1)}=\frac{H_{n, 1} b_{2,1}-H_{n, 2} b_{1,1}+b_{2,3} b_{2,1} D_{n}^{(2)}}{b_{1,2} b_{2,1}-b_{2,2} b_{1,1}} ;$
$C_{n}^{(1)}=\frac{H_{n, 1}-b_{1,2} D_{n}^{(1)}}{b_{1,1}}, \quad n=0,1,2, \ldots$.

Having gradually defined with the help of recurrent solutions (16) all $C_{n-j}^{(i)}, D_{n-j}^{(i)}$, we will get the final problem solution as:

$$
\begin{align*}
& u^{(1)}(\rho, \tau)=\lambda \sum_{n=0}^{\infty} L_{n}(\lambda \tau) \sum_{j=0}^{n}\left[C_{n-j}^{(1)} G_{j}(\lambda \rho)+D_{n-j}^{(1)} W_{j}(\lambda \rho)\right] \tag{17}\\
& u^{(2)}(\rho, \tau)=\lambda \sum_{n=0}^{\infty} L_{n}(\lambda \tau) \sum_{j=0}^{n} D_{n-j}^{(2)} W_{j}\left(\lambda \tilde{c}_{2} \rho\right)
\end{align*}
$$

Parameter λ serves as the scale multiplier in numerical summation of the series (17).

4. NUMERICAL ANALYSIS
 ,

For the purpose of approbation of the received results, a comparative analysis of numerical results obtained from the correlations (17) with known results for a homogeneous cylinder (6) received using the integral Laplace transform, was conducted.

A solution for a homogeneous cylinder can be obtained from the correlations (17) if to consider that the cylinder is in contact with space, constants and density of which are significantly lower than corresponding values of the cylinder material.

For the numerical analysis it was selected a cylinder with a relative radius of the inner surface $\rho_{0}=0.6$ and $\kappa_{1}^{2}=3.5$ which is affected by external load:
$p^{*}(\tau)=p^{*} \times\left(1-\exp \left(-\tau_{0} \tau\right)\right)^{2}$,
where p^{*} - dimensional value (Pa).
Dependance (18) makes it possible to agree well zero initial conditions with boundary ones, and in this case parameter τ_{0} determines the time of the external load output on the stationary value.

Fig. 2. Displacements the outer surface of the cylinder with different mechanical properties of elastic space

In the Fig. 2 there is the time distribution of dimensionless displacmenents $u^{(1)}(\rho, \tau)$ on the surface $\rho=1$ under $\kappa_{2}^{2}=2.5$
and different relative mechanical properties of space: $\tilde{\mu}_{2}=\tilde{c}_{2}=$ $0.5,0.1,0.05,0.01,0.005$, correspondingly curves $1,2,3$, 4,5 . Calculations were performed as $\tau_{0}=3$ and in the series according to the Laguerre polynomials 60 members were held.

As it is seen, the reduction of relative mechanical properties of the space leads to the increase in the amplitude of oscillation and the termination of the process of wave attenuation that agrees well with the physics of the phenomenon.

The results of calculation obtained for the value when were compared in their turn with the results obtained for a homogeneous cylinder using the Laplace transform (Sneddon, 1951). It was found out, that holding 60 members of the series according to the Laguerre polynomials the relative error between the results received using two methods does not exceed 0.5%.

Using the results obtained for the case of the cylinder and space it was also performed the calculation of the stress-strain state in the thin-walled steel cylinder ($\rho_{0}=0.9, \kappa_{1}^{2}=3.5$), inserted into the space of the sandstone ($\kappa_{2}^{2}=2.7, \tilde{\mathrm{c}}_{2}=0.67$, $\left.\tilde{\mu}_{2}=0.16\right)$.

In this case it was considered that the load of the cylinder inner surface is a function of the impulsing tupe:
$p(\tau)=p^{*}\left((1-\tau)^{2}-1\right)^{2}, \tau \leq 2 ; \quad p(\tau)=0, \tau>2$.
In the Fig. 3 there is a time distribution of dimensionless radial stresses $\sigma_{\rho}=\sigma_{\rho \rho}^{(i)}(\rho, \tau) / p^{*}$ at different points of the cylinder and space. In this case, given the results of the comparative analysis above 60 members of the series according to the Laguerre polynomials were held.

Fig. 3. Time distribution of radial stresses on different surfaces

According to the given results, the specified stresses reach the maximum modulo value on the surface where there is a load. On the division surface of cylinder materials and external space ($\rho=1$) during the load impulse action radial stresses make about 50% of its level and after the time moment $\tau=3$ thay change their sign and quickly attenuate. Approximately the same conclusions can be reached about the radial stresses in the
material of the space.

\qquad
\qquad

\qquad

