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Abstract: Using method of Laguerre polynomials we have obtained the solution of the dynamic problem of the theory of elasticity for elas-
tic cylinder inserted into massive body modeled as a space. The source of non-stationary processes in composite is high intensity force 
load of the inner surface of the cylinder. On the surface separation of materials of space and cylinder the conditions of ideal mechanical 
contact are satisfied. The solution is obtained as series of Laguerre polynomials, which coefficients are found from recurrent relations. The 
results of numerical analysis of transient stress-strain state in elastic space with cylindrical insertion might be used for the technological 
process of hydraulic fracturing during shale gas extraction.  
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1. INTRODUCTION 

The common tendency of the development of modern tech-
nology and engineering is the elaboration and wide usage of new 
structural materials. Some of the most perspective new materials 
are composite materials, that are characterized by sheeting and 
significant discrepancy between mechanical features of structural 
sheets. 

One of the most common methods of research of mechanical 
fields in composite bodies and spaces is homogenization of their 
features with further research of their behaviour as hypothetically 
homogeneous structures. With such approach we can simplify the 
general problem definition and use well-known methods of re-
search of mechanical fields in homogeneous bodies. Still, using 
this approach we very often cannot authentically define qualitative 
and quantitative features of the processes in the very composite 
that are caused by its nonhomogeneity (Theotokoglou and Stam-
pouloglou, 2008; Zhang and Hasebe, 1999). 

The other approach in which an internal nonhomogeneity and 
interaction between separate parts of the composite are taken into 
account causes a consideration of separate problems for each 
composite element with further regard for their contact conditions 
(de Monte, 2006; Yin and Yue, 2002). Within this approach it is 
possible to account the real stress-strain state in every layer and 
define some peculiar features of the transformation of mechanical 
fields on the section surfaces. In case of flat-layered or sphere-
layered body for solving the received problems the Laplace inte-
gral transform was successfully used (Liu and Qu, 1998, Sulym et 
al., 2013, Wang et al., 2002). However, for inhomogeneous cylin-
drical bodies the direct usage of this transformation creates great 
difficulties of the transition from transforms to originals (Lu, et al., 
2006). Specially, it is about the cases when a cylinder is inserted 
in elastic space – because of the phenomenon of vibration damp-

ing we need to find complex roots of the complicated transcen-
dental equation. Therefore, a lot of authors use either numerical 
methods of inversion of the Laplace integral transform (Dai and 
Wang, 2005;) or direct numerical methods (Onyshko and Senyuk, 
2009; Savruk et al., 2008; Sladek et al., 2008). 

This research aims at the elaboration of analytical method 
of finding the solution to dynamic axisymmetric problems of the 
theory of elasticity for cylinder included in elastic space, the inves-
tigation of transient stress-strain state in elastic space with cylin-
drical insertion, caused by impact load of its boundary surface. 
Method of solution based on the use to the problem of Laguerre 
integral transformation (Sulym and Turchyn, 2012; Turchyn 
and Turchyn, 2013). 

2. PROBLEM FORMULATION 

Now we consider the dynamic problem of the theory of elastic-
ity for inserted into elastic space of cylinder with excellent me-
chanical properties of the medium (Fig. 1). 

 
Fig. 1. Scheme of the problem 
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The source of non-stationary processes in composite is high 
intensity force load of the inner surface of the cylinder. 

In order to identify the stress and strain field in the composite, 
assuming that on the surfaces of cylinder and elastic medium 
conditions of ideal mechanical contact are true, we should find the 
solution to the initial-boundary problem: 

𝜌−1𝜕𝜌(𝜌𝜕𝜌𝑢(𝑖)) − 𝜌−2𝑢(𝑖) − 𝑐̃𝑖
2𝜕𝜏

2𝑢(𝑖) = 0,     𝑖 = 1,2; (1) 

𝜎𝜌𝜌
(1)

= −𝑝∗(𝜏),   𝜌 = 𝜌0;    𝑢(2) = 0, 𝜌 → ∞; (2) 

𝑢(1) = 𝑢(2), σρρ
(1)

= σρρ
(2)

   ρ = 1; (3) 

𝑢(𝑖) = ∂τ𝑢(𝑖) = 0,   τ = 0,   𝑖 = 1,2, (4) 

where: 𝜌 = 𝑟/𝑅1 – non-dimensional radial variable of the cylin-

drical coordinate system; R0, R1 – accordingly, radiuses of the 

inner and the external surface of the cylinder, 𝑢(𝑖)(𝜌, 𝜏) – dis-
placment to the radial motion (𝑖 = 1 – in cylinder, 𝑖 = 2 – 

in elastic medium; 𝑐̃𝑖 =
𝑐1

𝑐𝑖,1

,   𝜏 =
𝑐1𝑡

𝑅1
 – non-dimensional time; 

𝑐𝑖,1 – the longitudinal waves propagation velocities in the material 

of cylinder other elastic medium; 𝜎𝜌𝜌
(𝑖)

(𝜌, 𝜏) – radial stresses 

in the cylinder other elastic medium, that are determined 
by Hook's law: 

𝜎𝜌𝜌
(𝑖)

= 𝜇𝑖 [𝜅𝑖
2𝜕𝜌𝑢(𝑖) + (𝜅𝑖

2 − 2)
𝑢(𝑖)

𝜌
], (5) 

where: 𝜅𝑖
2 =

𝜆𝑖+2𝜇𝑖

𝜇𝑖
; 𝜆𝑖, 𝜇𝑖 – elastic constants. 

3. SOLUTION OF THE PROBLEM  

We will search for the problem (1)-(4) solution in the class 

of functions that belong to the space 𝐿2(0, ∞;    𝜆𝑒𝑥𝑝(−𝜆𝜏)), 
i.e. for which the condition: 

‖𝑢(𝑖)(𝜌, 𝜏)‖
2

= 𝜆 ∫ 𝑒𝑥𝑝(−𝜆𝜏)|𝑢(𝑖)(𝜌, 𝜏)|
2

𝑑𝜏
∞

0
< ∞    

is true, where 𝜆 > 0 some number (scaled multiplier). Then, 

the functions 𝑢(𝑖)(𝜌, 𝜏) can be showed as a series of Laguerre 
polynomials: 

𝑢(𝑖)(𝜌, 𝜏) = 𝜆 ∑ 𝑢𝑛
(𝑖)

(𝜌)𝐿𝑛(𝜆𝜏)∞
𝑛=0 , (6) 

where: 

𝑢𝑛
(𝑖)

(𝜌) = ∫ 𝑒𝑥𝑝(−𝜆𝜏) 𝑢(𝑖)(𝜌, 𝜏)𝐿𝑛(𝜆𝜏)𝑑𝜏
∞

0
 , (7) 

and Ln(λτ) – Laguerre polynomials. 
Further we will consider the formula (7) as integral transform 

of the function, and a series (6) – as the inversion formula of this 
transform. 

Now we multiply the equation (1) on the conversion core 

𝑒𝑥𝑝(−𝜆𝜏)𝐿𝑛(𝜆𝜏) and integrate the obtained expression accord-

ing the variable τ in the interval [0, ∞). Accounting the equation 
(7) and the initial conditions (4), after the integration by parts we 
will obtain: 

𝜌−1𝑑𝜌(𝜌𝑑𝜌𝑢𝑛
(𝑖)

) − 𝜌−2𝑢𝑛
(𝑖)

− 𝜔𝑖
2𝑢𝑛

(𝑖)
=

                         = 𝜔𝑖
2 ∑ (𝑛 − 𝑚 + 1)𝑢𝑚

(𝑖)
,   𝑖 = 1,2𝑛−1

𝑚=0 ;
 (8) 

𝜎𝜌𝜌,𝑛
(1)

= −𝑝𝑛
∗ , 𝜌 = 𝜌0,  𝑢𝑛

(2)
= 0, 𝜌 → ∞; (9) 

𝑢𝑛
(1)

= 𝑢𝑛
(2)

, 𝜎𝜌𝜌,𝑛
(1)

= 𝜎𝜌𝜌,𝑛
(2)

, 𝜌 = 1, (10) 

where 𝜔𝑖 = 𝜆𝑐̃𝑖. 
The solution to the triangular sequence of ordinary differential 

equations can be written as on algebraically convolution:  

𝑢𝑛
(𝑖)

(𝜌) = ∑ [𝐶𝑛−𝑗
(𝑖)

𝐺𝑗(𝜔𝑖𝜌) + 𝐷𝑛−𝑗
(𝑖)

𝑊𝑗(𝜔𝑖𝜌)]𝑛
𝑗=0 . (11) 

Here are linearly independent fundamental solutions of the 
sequence (8), which we can represent as: 

𝐺𝑗(𝑥) = ∑ 𝑎𝑗,𝑝

(𝑥)𝑝

2𝑝𝑝!
I𝑝+1(𝑥);

𝑗

𝑝=0

 

𝑊𝑗(𝑥) = ∑ 𝑎𝑗,𝑝
(−𝑥)𝑝

2𝑝𝑝!
K𝑝+1(𝑥)

𝑗
𝑝=0 ,  

(12) 

where: 𝐼𝑝(𝑥) and 𝐾𝑝(𝑥) – Bessel’s modified functions, 

and coefficients aj,p satisfy recurrence relations: 

𝑎𝑗,𝑝+1 = ∑(𝑗 − 𝑘 + 1)𝑎𝑘,𝑝

𝑗−1

𝑘=𝑝

,   

 𝑗 = 1,2, . . ., 𝑝 = 0, 𝑗 − 1.   

(13) 

Accounting the conditions on infinity (2) and a view of funda-
mental solutions (12), we obtain that:  

𝐶𝑗
(2)

≡ 0,   𝑗 = 0,1,2, . ... (14) 

The direct solutions stuffing (11) into conditions (9)-(10) leads 
to correlations, which after some transformations can be repre-
sented as recurrent sequences of systems of linear algebraic 
equations: 

(

𝑏1,1 𝑏1,2 0

𝑏2,1 𝑏2,2 𝑏2,3

𝑏3,1 𝑏3,2 𝑏3,3

) (

𝐶𝑛
(1)

𝐷𝑛
(1)

𝐷𝑛
(2)

) = (

𝐻𝑛,1

𝐻𝑛,2

𝐻𝑛,3

), (15) 

where: 

𝑏1,1 = 𝜅1
2𝜔1𝐼0(𝜔1𝜌0) −

2

𝜌0
𝐼1(𝜔1𝜌0); 𝑏1,2 = −𝜅1

2𝜔1𝐾0(𝜔1𝜌0) −
2

𝜌0
𝐾1(𝜔1𝜌0); 𝑏2,1 = 𝐼1(𝜔1); 𝑏2,2 = 𝐾1(𝜔1); 𝑏2,3 = −𝐾1(𝜔2);  

𝑏3,1 = 𝜅1
2𝜔1𝐼0(𝜔1) − 2𝐼1(𝜔1); 𝑏3,2 = −𝜅1

2𝜔1𝐾0(𝜔1) − 2𝐾1(𝜔1); 𝑏3,3 = 𝜇̃2(𝜅2
2𝜔2𝐾0(𝜔2) + 2𝐾1(𝜔2)), 𝜇̃2 = 𝜇2 𝜇1⁄ ;.  

𝐻1,𝑛 = −
𝑝𝑛

𝜇1
− ∑ 𝐶𝑛−𝑗

(1)
[𝜅1

2𝐺𝑗
′(𝜔1𝜌0) + (𝜅1

2 − 2)𝐺𝑗(𝜔1𝜌0)]𝑛
𝑗=1 − ∑ 𝐷𝑛−𝑗

(1)
[𝜅1

2𝑊𝑗
′(𝜔1𝜌0) + (𝜅1

2 − 2)𝑊𝑗(𝜔1𝜌0)]𝑛
𝑗=1 ; 

𝐻2,𝑛 = ∑ [𝐷𝑛−𝑗
(2)

𝑊𝑗(𝜔2) − 𝐶𝑛−𝑗
(1)

𝐺𝑗(𝜔1) − 𝐷𝑛−𝑗
(1)

𝑊𝑗(𝜔1)]𝑛
𝑗=1 ; 𝐻3,𝑛 = 𝜇̃2 ∑ 𝐷𝑛−𝑗

(2)
[𝜅2

2𝑊𝑗
′(𝜔2) + (𝜅2

2 − 2)𝑊𝑗(𝜔2)]𝑛
𝑗=1 − 

− ∑ 𝐶𝑛−𝑗
(1)

[𝜅1
2𝐺𝑗

′(𝜔1) + (𝜅1
2 − 2)𝐺𝑗(𝜔1)]𝑛

𝑗=1 − ∑ 𝐷𝑛−𝑗
(1)

[𝜅1
2𝑊𝑗

′(𝜔1) + (𝜅1
2 − 2)𝑊𝑗(𝜔1)]𝑛

𝑗=1 ,  
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𝐺𝑗
′(𝜔𝑖𝜌) = ∑ 𝑎𝑗,𝑝

(𝜔𝑖𝜌)𝑝

2𝑝𝑝!
[𝜔𝑖𝐼𝑝(𝜔𝑖𝜌) −

𝐼𝑝+1(𝜔𝑖𝜌)

𝜌
]

𝑗
𝑝=0 , 𝑊𝑗

′(𝜔𝑖𝜌) = ∑ 𝑎𝑗,𝑝
(−𝜔𝑖𝜌)𝑝

2𝑝𝑝!
[−𝜔𝑖𝐾𝑝(𝜔𝑖𝜌) −

𝐾𝑝+1(𝜔𝑖𝜌)

𝜌
]

𝑗
𝑝=0   

From (15) obtain the recurrent solution: 

𝐷𝑛
(2)

=
(𝐻𝑛,1𝑏2,1−𝐻𝑛,2𝑏1,1)(𝑏1,2𝑏3,1−𝑏3,2𝑏1,1)−(𝐻𝑛,1𝑏3,1−𝐻𝑛,3𝑏1,1)(𝑏1,2𝑏2,1−𝑏2,2𝑏1,1)

𝑏1,1{𝑏2,3(𝑏3,2𝑏1,1−𝑏1,2𝑏3,1)+𝑏3,3(𝑏1,2𝑏2,1−𝑏2,2𝑏1,1)}
;  𝐷𝑛

(1)
=

𝐻𝑛,1𝑏2,1−𝐻𝑛,2𝑏1,1+𝑏2,3𝑏2,1𝐷𝑛
(2)

𝑏1,2𝑏2,1−𝑏2,2𝑏1,1
;   

𝐶𝑛
(1)

=
𝐻𝑛,1−𝑏1,2𝐷𝑛

(1)

𝑏1,1
,    𝑛 = 0,1,2, … . 

(16) 

 
Having gradually defined with the help of recurrent solutions 

(16) all Cn−j
(i)

, Dn−j
(i)

, we will get the final problem solution as: 


 
 

  
  

1 11

0 0

n

n j jn j n j
n j

u ρ τ λ L λτ C G λρ D W λρ( ) ( )( )( , ) ( ) ( ) ( )




 

  
22

2
0 0

n

n jn j
n j

u ρ τ λ L λτ D W λc ρ( )( )( , ) ( ) ( )  

(17) 

Parameter 𝜆 serves as the scale multiplier in numerical sum-
mation of the series (17). 

4. NUMERICAL ANALYSIS  

For the purpose of approbation of the received results, a com-
parative analysis of numerical results obtained from the correla-
tions (17) with known results for a homogeneous cylinder (6) 
received using the integral Laplace transform, was conducted. 

A solution for a homogeneous cylinder can be obtained from 
the correlations (17) if to consider that the cylinder is in contact 
with space, constants and density of which are significantly lower 
than corresponding values of the cylinder material. 

For the numerical analysis it was selected a cylinder with a 

relative radius of the inner surface 𝜌0 = 0.6 and 𝜅1
2 = 3.5 which 

is affected by external load: 

𝑝∗(𝜏) = 𝑝∗ × (1 − 𝑒𝑥𝑝(−𝜏0𝜏))2, (18) 

where p∗ – dimensional value (Pa). 
Dependance (18) makes it possible to agree well zero initial 

conditions with boundary ones, and in this case parameter 𝜏0 
determines the time of the external load output on the stationary 
value. 

 
Fig. 2. Displacements the outer surface of the cylinder  
           with different mechanical properties of elastic space 

In the Fig. 2 there is the time distribution of dimensionless dis-

placmenents u(1)(ρ, τ) on the surface ρ = 1 under κ2
2 = 2.5 

and different relative mechanical properties of space: 𝜇̃2 = 𝑐̃2 =
0.5, 0.1, 0.05, 0.01, 0.005, correspondingly curves 1, 2, 3, 
4, 5. Calculations were performed as 𝜏0 = 3 and in the series 
according to the Laguerre polynomials 60 members were held. 

As it is seen, the reduction of relative mechanical properties 
of the space leads to the increase in the amplitude of oscillation 
and the termination of the process of wave attenuation that agrees 
well with the physics of the phenomenon.  

The results of calculation obtained for the value when were 
compared in their turn with the results obtained for a homogene-
ous cylinder using the Laplace transform (Sneddon, 1951). It was 
found out, that holding 60 members of the series according to the 
Laguerre polynomials the relative error between the results re-
ceived using two methods does not exceed 0.5%. 

Using  the results obtained for the case of the cylinder and 
space it was also performed the calculation of the stress-strain 

state in the thin-walled steel cylinder (𝜌0 = 0.9, 𝜅1
2 = 3.5), 

inserted into the space of the sandstone (𝜅2
2 = 2.7, c̃2 = 0.67, 

𝜇̃2 = 0.16). 
In this case it was considered that the load of the cylinder in-

ner surface is a function of the impulsing tupe: 

𝑝(𝜏) = 𝑝∗((1 − 𝜏)2 − 1)2, 𝜏 ≤ 2;    𝑝(𝜏) = 0,   𝜏 > 2. (19) 

In the Fig. 3 there is a time distribution of dimensionless radial 

stresses 𝜎𝜌 = 𝜎𝜌𝜌
(𝑖)

(𝜌, 𝜏) 𝑝∗⁄  at different points of the cylinder 

and space. In this case, given the results of the comparative 
analysis above 60 members of the series according to the La-
guerre polynomials were held.  

 
Fig. 3. Time distribution of radial stresses on different surfaces 

According to the given results, the specified stresses reach 
the maximum modulo value on the surface where there is a load. 
On the division surface of cylinder materials and external space           

(𝜌 = 1) during the load impulse action radial stresses make 

about 50% of its level and after the time moment 𝜏 = 3 thay 
change their sign and quickly attenuate. Approximately the same 
conclusions can be reached about the radial stresses in the 
material of the space. 
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Fig. 4 presents the displacements change at different point 

of the cylinder for 𝑝∗ 𝜇
1

⁄ = 0.01. 

 
Fig. 4. Time distribution of radial displacements 

As it is seen from the above, displacements of two boundary 
surfaces almost coincide that agrees well with small relative 
thickness of the cylinder and the malleability of the space. 

 
Fig. 5. Time distribution of radial stresses 

The results of the calculation of dimensionless circular 

stresses 𝜎𝜙 ≡ 𝜎𝜙𝜙

(𝑖)
/𝑝∗ are given presented in Fig. 5. At that 

stresses acting in the space were magnified 10 times.  
According to the given results, circular stresses in the cylinder 

in absolute value exceed correspondent radial ones almost 
5 times. In the space the level of these stresses slumps due to 
significantly poorer elastic properties of its material. Circular 
stresses reach the maximum value at the moments of time 
that follow immediately after the load impulse action termination 
and qualitatively repeat time distribution of radial displacements. 

5. CONCLUSION  

The paper proposes a new solution of the plane dynamic pro-
blem of elasticity theory for a elastic space with cylindrical tab. 
The solution is obtained as series of Laguerre polynomials, which 
coefficients are found from recurrent relations. The results 
of numerical analysis of transient stress-strain state in elastic 
space with cylindrical insertion might be used for the technological 
process of hydraulic fracturing during shale gas extraction. 
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