PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pourbaix diagrams for copper ores processing with seawater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Decreases in the copper grade, waste disposal, energy supply, and water scarcity are some of the most critical challenges for the copper mining industries. One of the alternatives to counteract the water scarcity is the use of seawater, whether raw, partially desalinated, or desalinated. The use of seawater implies the generation of several compounds as a result of the interaction of ions in waters and ores. For this reason, it is required a greater understanding of these compounds generated on mineral processing, being Pourbaix diagrams used to estimate the possible compounds that will be formed in an aqueous medium for a given metal ore. In this paper, the effect of temperature, salinity, and Cu-concentration on the stability of the copper-solid species was investigated by constructing Pourbaix diagrams for different copper ore types with seawater. The results show that the corrosion areas decrease when the temperature increases for both oxidized and sulfide minerals. It was confirmed that the concentration is a critical variable that influences the size of corrosion areas. In terms of the effect of the other ions that seawater contains, carbonate, chloride, and bromide affect the stability of the Cu-solid species. The proposed diagrams serve as a useful tool to predict the stable species that may be obtained when seawater is used. The use of seawater in mining is an essential issue because it is considered as a more sustainable alternative instead of use freshwater or desalinated seawater, especially in locations with complex water availability, as is northern Chile.
Rocznik
Strony
625--640
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, 1240000 Antofagasta, Chile
  • Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, 1240000 Antofagasta, Chile
  • Departamento de Ingeniería Metalúrgica y Minas, Universidad Católica del Norte, 1240000 Antofagasta, Chile
  • Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, 1240000 Antofagasta, Chile
Bibliografia
  • ALI, Y., PRETAROLI, R., SOCCI, C., SEVERINI, F., 2018. Carbon and water footprint accounts of Italy: A Multi-Region Input-Output approach. Renew. Sustain. Energy Rev. 81, 1813–1824.
  • BELMONGE, M.R., MADRID, M.M., PEREZ-QUIROZ, J.T., SALAS, B.V., JUAREZ-ARELLANO, E.A., SCHORR, M., 2015. Surface modification of carbon steel reinforcement of concrete. Anti-Corrosion Methods Mater. 62, 69–76.
  • BYRND, R.H., 2002. Inorganic speciation of dissolved elements in seawater: The influence of ph on concentration ratios. Inorg. Chem. React. Struct. Mech. 3, 205–216.
  • BYRNE, R.H., KUMP, L.R., CANTRELL, K.J., 1988. The influence of temperature and pH on trace metal speciation in seawater. Mar. Chem. 25, 163–181.
  • CASTRO, S., 2018. Physico-chemical factors in flotation of Cu-Mo-Fe ores with seawater: A critical review. Physicochem. Probl. Miner. Process. 54, 1223–1236.
  • CAVIN, L., 2017. Freshwater Environments and Fishes, in: Freshwater Fishes: 250 Million Years of Evolutionary History. ISTE Press Ltd - Elsevier Ltd, pp. 1–14.
  • CISTERNAS, L.A., GALVEZ, E.D., 2017. The use of seawater in mining. Miner. Process. Extr. Metall. Rev. 1–16.
  • CISTERNAS, L.A., GALVEZ, E.D., 2014. Chile’s mining and chemicals industries. Chem. Eng. Prog. 110, 46–51.
  • CLARKE, D., COSTA, D., ARBAB, F., 2006. Connector Colouring I: Synchronisation and Context Dependency. Electron. Notes Theor. Comput. Sci. 154, 101–119.
  • COCHILCO, 2019. Anuario de Estadisticas del Cobre y Otros Minerales 1999-2018. Com. Chil. del Cobre. CRUZ, C., RAMOS, J., ROBLES, P., LEIVA, W.H., JELDRES, R.I., CISTERNAS, L.A., 2020. Partial seawater desalination treatment for improving chalcopyrite floatability and tailing flocculation with clay content. Miner. Eng. 151, 106307.
  • CRUZ, C., REYES, A., JELDRES, R.I., CISTERNAS, L.A., KRASLAWSKI, A., 2019. Using Partial Desalination Treatment To Improve the Recovery of Copper and Molybdenum Minerals in the Chilean Mining Industry. Ind. Eng. Chem. Res. 58, 8915–8922.
  • DEZFOOLIAN, M., RASHCHI, F., NEKOUEI, R.K., 2015. Synthesis of copper and zinc oxides nanostructures by brass anodization in alkaline media. Surf. Coatings Technol. 275, 245–251.
  • DIXON, R.E., 2013. Northern Chile and Peru: a hotspot for desalination. Desalin. Water Treat. 51, 5–10.
  • ELIMELECH, M., PHILLIP, W.A., 2011. The future of seawater desalination: Energy, technology, and the environment. Science (80-. ). 333, 712–717.
  • FAN, Y., YANG, Y., XIAO, Y., ZHAO, Z., LEI, Y., 2013. Recovery of tellurium from high tellurium-bearing materials by alkaline pressure leaching process: Thermodynamic evaluation and experimental study. Hydrometallurgy 139, 95–99.
  • GALVEZ, E.D., CISTERNAS, L.A., 2017. Innovative Solutions for Seawater Use in Mining Operations. Case Study Innov. Proj. - Success. Real Cases. https://doi.org/10.5772/intechopen.68191
  • HAUNG, H.-H., 2016. The Eh-pH Diagram and Its Advances. Metals (Basel). 6, 23.
  • HAUNG, H.-H., 1989. Construction of Eh–pH and Other Stability Diagrams of Uranium in a Multicomponent System with a Microcomputer—II. Distribution Diagrams. Can. Metall. Q. 28, 235–239.
  • HAUNG, H.-H., CUENTAS, L., 1989. Construction of Eh–pH and Other Stability Diagrams of Uranium in a Multicomponent System with a Microcomputer—I. Domains of Predominance Diagrams. Can. Metall. Q. 28, 225–234.
  • HERNANDEZ, P.C., TABOADA, M.E., HERREROS, O.O., GRABER, T.A., GHORBANI, Y., 2018. Leaching of chalcopyrite in acidified nitrate using seawater-based media. Minerals 8, 238.
  • HERNANDRZ, P.C., TABOADA, M.E., HERREROS, O.O., TORRES, C.M., GHORBANI, Y., 2015. Chalcopyrite dissolution using seawater-based acidic media in the presence of oxidants. Hydrometallurgy 157, 325–332.
  • HERRERA-LEON, S., CRUZ, C., KRASLAWSKI, A., CISTERNAS, L.A., 2019. Current situation and major challenges of desalination in Chile. Desalin. water Treat. 171, 93–104.
  • HOEKSTRA, A.Y., CHAPAGAIN, A.K., 2008. Globalization of Water: Sharing the Planet’s Freshwater Resources, Globalization of Water: Sharing the Planet’s Freshwater Resources. Blackwell Publishing Ltd.
  • JELDRES, R.I., FORBES, L., CISTERNAS, L.A., 2016. Effect of Seawater on Sulfide Ore Flotation: A Review. Miner. Process. Extr. Metall. Rev. 37, 369–384.
  • KOBYLIN, P., MAENPAA, L., ROINE, A., ANTTILA, K., 2014. E-pH (Pourbaix) Diagrams Module, in: HSC Chemistry 8.0. p. 16.
  • KOCHKODAN, V., DARWISH, N. BIN HILAL, N., 2015. The Chemistry of Boron in Water, in: Boron Separation Processes. Elsevier, pp. 35–63.
  • LAGOS, G., PETERS, D., VIDELA, A., JARA, J.J., 2018. The effect of mine aging on the evolution of environmental footprint indicators in the Chilean copper mining industry 2001–2015. J. Clean. Prod. 174, 389–400.
  • LOIZIDES, L., 2000. The Cost of Environmental and Social Sustainability of Desalination . Source: <http://gwriic.technion.ac.il/pdf/IDS/96.pdf>.
  • LUO, T., YOUND, R., REIG, P., 2015. Aqueduct projected water stress country rankings. Technical Note. Washington D.C.
  • MILLER, G., 1998. Factors controlling heap leaching performance with fine and clayey ores, in: ALTA 1998. Perth, Australia, p. 24.
  • MILLERO, F., WOOSLEY, R., DITROLIO, B., WATERS, J., 2009. Effect of Ocean Acidification on the Speciation of Metals in Seawater. Oceanography 22, 72–85.
  • MILLERO, F.J., 1974. The Physical Chemistry of Seawater. Annu. Rev. Earth Planet. Sci. 2, 101–150.
  • MILLERO, F.J., FEISTEL, R., WRIGHT, D.G., MCDOUGALL, T.J., 2008. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep. Res. Part I Oceanogr. Res. Pap. 55, 50–72.
  • MU, Y., PENG, Y., 2019. The effect of saline water on copper activation of pyrite in chalcopyrite flotation. Miner. Eng. 131, 336–341.
  • NORTHEY, S., HAQUE, N., MUDD, G., 2013. Using sustainability reporting to assess the environmental footprint of copper mining. J. Clean. Prod. 40, 118–128.
  • NORTHEY, S.A., MUDD, G.M., SAARIVUORI, E., WESSMAN-JAASKELAINEN, H., HAQUE, N., 2016. Water footprinting and mining: Where are the limitations and opportunities? J. Clean. Prod. 135, 1098–1116.
  • ORDONEZ, J.I., KORENO, L., GONZALEZ, J.F., CISTERNAS, L.A., 2015. Use of discharged brine from reverse osmosis plant in heap leaching: Opportunity for caliche mining industry. Hydrometallurgy 155, 61–68.
  • POURBAIX, M., 1966. Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, New York.
  • SU, G., GAO, X., DU, L., ZHANG, D., HU, J., LIU, Z., 2016. Influence of Mn on the corrosion behaviour of medium manganese steels in a simulated seawater environment. Int. J. Electrochem. Sci. 11, 9447–9461.
  • SUYANTARA, G.P.W., HIRAJIMA, T., MIKI, H., SASAKI, K., 2018. Floatability of molybdenite and chalcopyrite in artificial seawater. Miner. Eng. 115, 117–130.
  • TORRES, C.M., TABOADA, M.E., GRABER, T.A., HERREROS, O.O., GHORBANI, Y., WATLING, H.R., 2015. The effect of seawater based media on copper dissolution from low-grade copper ore. Miner. Eng. 71, 139–145.
  • VALDERRAMA, J.O., CAMPUSANO, R.A., GALVEZ, E.D., 2017. Correlation and Prediction of the Solubility of Air Gases in Saline Solutions for Mining Processes, Using Artificial Neural Networks. Clean - Soil, Air, Water 45, 1500902. https://doi.org/10.1002/clen.201500902
  • VELASQUEZ-YEVENES, L., QUEZADA-REYES, V., 2018. Influence of seawater and discard brine on the dissolution of copper ore and copper concentrate. Hydrometallurgy 180, 88–95.
  • VON BONSDORFF, R., JARVENPAA, N., AROMAA, J., FORSEN, O., HYVARINEN, O., BARKER, M.H., 2005. Electrochemical sensors for the HydroCopperTM process solution. Hydrometallurgy 77, 155–161.
  • WANG, B., PENG, Y., 2014. The effect of saline water on mineral flotation - A critical review. Miner. Eng. 66, 13–24.
  • WANG, H., WEN, S., HAN, G., FENG, Q., 2019. Effect of copper ions on surface properties of ZnSO4-depressed sphalerite and its response to flotation. Sep. Purif. Technol. 228.
  • WATLIN, H.R., 2014. Chalcopyrite hydrometallurgy at atmospheric pressure: 2. Review of acidic chloride process options. Hydrometallurgy 146, 96–110.
  • WRIGHT, J., COLLING, A., 1995. Seawater: its Composition, Properties and Behaviour. Elsevier.
  • XING, P, MA, B., WANG, C., CHEN, Y., 2019. Extraction and separation of zinc, lead, silver, and bismuth from bismuth slag. Physicochem. Probl. Miner. Process. 55, 173–183.
  • YAGI, S., NAKANISHI, H., ICHITSUBO, T., MATSUBARA, E., 2009. Oxidation-State Control of Nanoparticles Synthesized via Chemical Reduction Using Potential Diagrams. J. Electrochem. Soc. 156, D321.
  • YANG, B., ZENG, Z., WANG, X., YIN, X., CHEN, S., 2014. Pourbaix diagrams to decipher precipitation conditions of Si-Fe-Mn-oxyhydroxides at the PACMANUS hydrothermal field. Acta Oceanol. Sin. 33, 58–66.
  • YEPSEN, R., GUTIERREZ, L., LASKOWSKI, J., 2019. Flotation behavior of enargite in the process of flotation using seawater. Miner. Eng. 142, 105897.
  • ZEEBE, R.E.; WOLF-GLADROW, D., 2011. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier Science.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-906ede2c-f182-458a-bb86-d4932e5191dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.