PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Battery/super-capacitor HESS applied in DC microgrid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy storage technology (EST) is an effective way to improve the power quality of renewable energy generation (such as solar energy and wind energy), but a single energy storage system (ESS) is difficult to meet the demand for the safe operation of the grid. According to the structure and operation characteristics of the existing battery/super-capacitor hybrid energy storage system (HESS), a battery/super-capacitor HESS is proposed. The working principle and three working modes (the super-capacitor pre-charging cold standby mode, the boost mode and buck mode) of the HESS are analyzed in detail. The state equations of the boost mode and buck mode are derived. The state space average method is used to establish the small signal equivalent model under the buck/boost mode. Moreover, the charge and discharge control strategy of the HESS is obtained by combining the voltage closed-loop control. The simulation model is built in Matlab/Simulink to verify the effectiveness of the proposed HESS and its control strategy. The results show that the HESS and its control strategy can ensure the DC bus voltage has good stability and superior anti-interference, and it can simultaneously provide large current, increase the battery life, and improve the technical economy of energy storage.
Rocznik
Strony
379--388
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wz.
Twórcy
autor
  • Lanzhou Jiaotong University China
  • Lanzhou Jiaotong University China
autor
  • LanzhouJiaotongUniversity China
autor
  • Lanzhou Jiaotong University China
autor
  • Lanzhou Jiaotong University China
Bibliografia
  • [1] Telukunta V., Pradhan J., Agrawal A., Singh M., Srivani S.G., Protection challenges under bulk penetration of renewable energy resources in power systems: A review, CSEE Journal of Power and Energy Systems, vol. 3, no. 4, pp. 365–379 (2017), DOI: 10.17775/CSEEJPES.2017.00030.
  • [2] Zhang C., Chen H., Liang Z., Mo W., Zheng X., Hua D., Interval voltage control method for transmission systems considering interval uncertainties of renewable power generation and load demand, IET Generation, Transmission and Distribution, vol. 12, no. 17, pp. 4016–4025 (2018), DOI: 10.1049/ietgtd.2018.5419.
  • [3] Fan M., Sun K., Lane D., Gu W., Li Z., Zhang F., A Novel Generation Rescheduling Algorithm to Improve Power System Reliability with High Renewable Energy Penetration, IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3349–3357 (2018), DOI: 10.1109/TPWRS.2018.2810642.
  • [4] Zhang Z., Zhang Y., Huang Q., Lee W., Market-oriented optimal dispatching strategy for a wind farm with a multiple stage hybrid energy storage system, CSEE Journal of Power and Energy Systems, vol. 4, no. 4, pp. 417–424 (2018), DOI: 10.17775/CSEEJPES.2018.00130.
  • [5] Yan N., Zhang B., Li W., Ma S., Hybrid Energy Storage Capacity Allocation Method for Active Distribution Network Considering Demand Side Response, IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 1–4 (2019), DOI: 10.1109/TASC.2018.2889860.
  • [6] Jiang W., Zhu C., Yang C., Zhang L., Xue S., Chen W., The Active Power Control of Cascaded Multilevel Converter Based Hybrid Energy Storage System, IEEE Transactions on Power Electronics,vol. 34, no. 8, pp. 8241–8253 (2019), DOI: 10.1109/TPEL.2018.2882450.
  • [7] Zhang Y., Iu H.H., Fernando T., Yao F., Emami K., Cooperative Dispatch of BESS and Wind Power Generation Considering Carbon Emission Limitation in Australia, IEEE Transactions on Industrial Informatics, vol. 11, no. 6, pp. 1313–1323 (2015), DOI: 10.1109/TII.2015.2479577.
  • [8] Yang Z., Yang Z., Xia H., Lin F., Brake Voltage Following Control of Supercapacitor-Based Energy Storage Systems in Metro Considering Train Operation State, IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6751–6761 (2018), DOI: 10.1109/TIE.2018.2793184.
  • [9] He P., Khaligh A., Comprehensive analyses and comparison of 1 kW isolated DC-DC converters for bidirectional EV charging systems, IEEE Transactions on Transportation Electrification, vol. 3, no. 1, pp. 147–156 (2017).
  • [10] Kim K., Cha H., Park S., Lee I., A Modified Series-Capacitor High Conversion Ratio DC–DC Converter Eliminating Start-Up Voltage Stress Problem, IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 8–12 (2018), DOI: 10.1109/TPEL.2017.2705705.
  • [11] Suntio T., Kuperman A., Comments on An Efficient Partial Power Processing DC/DC Converter for Distributed PV Architectures, IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 2372–2372 (2015), DOI: 10.1109/TPEL.2014.2327018.
  • [12] Wang J., Xu Y., Lv M., Modeling and simulation analysis of hybrid energy storage system based on wind power generation system, IEEE:2018 International Conference on Control, Automation and Information Sciences (ICCAIS), Hangzhou, China, pp. 422–427 (2018).
  • [13] Bahloul M., Khadem S.K., Impact of Power Sharing Method on Battery Life Extension in HESS for Grid Ancillary Services, IEEE Transactions on Energy Conversion, vol. 34, no. 3, pp. 1317–1327 (2019), DOI: 10.1109/TEC.2018.2886609.
  • [14] Xiao J., Wang P., Setyawan L., Multilevel Energy Management System for Hybridization of Energy Storages in DC Microgrids, IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 847–856 (2016), DOI: 10.1109/TSG.2015.2424983.
  • [15] Ma W., Optimal Allocation of Hybrid Energy Storage Systems for Smoothing Photovoltaic Power Fluctuations Considering the Active Power Curtailment of Photovoltaic, IEEE Access, vol. 7, pp. 74787–74799 (2019), DOI: 10.1109/ACCESS.2019.2921316.
  • [16] Li B.B., Xu D.D., Zhang Y., Yang R.F., Wang G.L., Xu D.G., Closed-loop pre-charge control of modular multilevel converters during start-up processes, IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 524–531 (2015), DOI: 10.1109/TPEL.2014.2334055.
  • [17] Wang L., Electromagnetic Transient Modeling and Simulation of Power Converters Based on a Piecewise Generalized State Space Averaging Method, IEEE Access, vol. 7, pp. 12241–12251 (2019), DOI: 10.1109/ACCESS.2019.2891122.
  • [18] Chen P.P., Wang X.Q., Design of Pre-charge Resistor Selection for Power Battery, Bus and Coach Technology and Research, vol. 40, no. 01, pp. 30–33 (2018), DOI: 10.15917/j.cnki.1006-3331.2018.01.009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-906c38d4-816a-4702-afd8-1388a59f2b47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.