PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical Solutions of Classical and Fractional KP-Burger Equation and Coupled KdV Equation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Development of new analytical and numerical methods and their applications for solving non-linear partial differential equations (both classical and fractional) is a rising field of Applied Mathematical research because of its applications in Physical, Biological and Social Sciences. In this paper we have used a generalized Tanh method to find the exact solution of KP-Burger equation and coupled KdV equation. The fractional Sub-equation method has been used to find the solution of fractional KP-Burger equation and fractional coupled KdV equations. The exact solution obtained by the fractional sub-equation method reduces to classical solution when the order of fractional derivative tends to one. Finally numerical simulation has been done. The numerical simulation justifies that the solutions of two fractional differential equations reduce to shock solution for KP-Burger equation and soliton solution for coupled KdV equations when the order of derivative tends to one.
Twórcy
autor
  • Department of Applied Mathematics, University of Calcutta, Kolkata, India
autor
  • Department of Applied Mathematics, University of Calcutta, Kolkata, India
autor
  • Reactor Control Systems Design Section E & I Group BARC Mumbai India
Bibliografia
  • [1] A.M.A. El-Sayed, M. Gaber, The adomian decomposition method for solving partial differential equations of fractal order in finite domains, Phys. Lett. A 359(20):175-182 (2006).
  • [2] A.M.A. El-Sayed, S.H. Behiry, W.E. Raslan, Adomian’s decomposition method for solving an intermediate fractional advectiondispersion equation, Comput. Math. Appl 59(5):1759-1765 (2010).
  • [3] S. Das. Functional Fractional Calculus 2nd Edition, Springer-Verlag 2011.
  • [4] J. Cang, Y. Tan, H. Xu and S. J. Liao, Series solutions of non-linear Riccati differential equations with fractional order, Chaos, Solitons and Fractals 40, 1-9 (2009).
  • [5] J.H. He. Homotopy perturbation technique, Comput Methods. Appl. Mech. Eng. 178(3-4), 257-262 (1999).
  • [6] J.H. He, Inter. J. Non-Linear Mech. 35, 37-43 (2000).
  • [7] H. Jafari, S. Momani, Solving fractional diffusion and wave equations by modified homotopy perturbation method, Phys. Lett. A 370, 388-396 (2007).
  • [8] Z. Odibat and S. Momani, Appl. Math. Lett. 21, 194-199 (2008).
  • [9] L. Huibin, W. Kelin, Exact solutions for two nonlinear equations: I, J. Phys. A: Math. Gen. 23, 3923-3928 (1990).
  • [10] A.M. Wazwaz, The tanh method for travelling wave solutions of nonlinear equations, Applied Mathematics and Computation 154, 713-723 (2004).
  • [11] E. Fan, Extended Tanh-Function Method and Its Applications to Nonlinear Equations, Physics Letters A 277(4-5), 212-218 (2000).
  • [12] S. Zhang, W. Wang and J. Lin Tong. Electronic Journal of Theoretical Physics Exact Non-traveling Wave and Coefficient Function Solutions for (2+1)-Dimensional Dispersive Long Wave Equations, 5(19), 177-190 (2008).
  • [13] T.B. Dinh, V.C. Long and K.W.Wojciechowski, Solitary waves in auxetic rods with quadratic nonlinearity: Exact analytical solutions and numerical simulations, Phys. Status Solidi B 252(7),1587-1594 (2015).
  • [14] T. Bui Dinh, V. Cao Long, K. Dinh Xuan, and K.W. Wojciechowski, Computer simulation of solitary waves in a common or auxetic elastic rod with both quadratic and cubic nonlinearities, Phys. Status Solidi B 249, 1386-1392 (2012).
  • [15] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA. 1999; 198.
  • [16] S. Zhang and H. Q. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, 375, 1069 (2011).
  • [17] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non differentiable functions further results, Comput. Math. Appl. 51(9-10), 1367-1376 (2006).
  • [18] U. Ghosh, S. Sengupta, S. Sarkar and S. Das, Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function, American Journal of Mathematical Analysis 3(2), 32-38 (2015).
  • [19] E. Fan, Y.C. Hon, Generalized tanh Method Extended to Special types of Non-linear equations, Z. Naturforsh 57, 692-700 (2002).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-906005ff-1193-44c4-a8e6-6828ebf61338
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.