PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of titanium and its alloys implants by low temperature surface plasma treatments for cardiovascular applications

Identyfikatory
Warianty tytułu
PL
Modyfikacja powierzchni implantów z tytanu i jego stopów w niskotemperaturowej plazmie w aspekcie zastosowań kardiologicznych
Języki publikacji
EN
Abstrakty
EN
Impairment of the cardiovascular system is a major cause of mortality in humans. Cardiac implants are made mostly of titanium and its alloys and various methods have been used to improve their surface properties. Titanium nitride — TiN and titanium oxide — TiO2 surface layers are promising materials to improve biocompatibility in this respect. Modifying their surface properties in the nanoscale may impact their protein adsorption and cellular response to the implant. Nitriding and oxynitriding processes in low-temperature plasma, also involving the use of an active screen, seem to be prospective methods in the production of titanium nitride and oxide forming an diffusive outer zone of titanium nitride TiN (nanocrystalline) + Ti2N + α-Ti(N) or oxynitrided TiO2(nanocrystalline) + TiN + Ti2N + α-Ti(N) surface layers on titanium alloy. Also a hybrid method that combines oxidizing and the RFCVD process for producing a-C:N:H (amorphous carbon modified with nitrogen and hydrogen) + TiO2 (nanocrystalline titanium oxide-rutile)-type composite surface layers on NiTi shape memory alloys is noteworthy in the context of medical applications. The paper presents the characteristics of these diffusion multi-phase layers in terms of their microstructure, topography, hardness, residual stress, corrosion and wear resistance, wettability as well as biological properties such as: adsorption of proteins — fibrinogen and albumin, and platelet adhesion during interaction with blood components (human plasma and platelet-rich plasma). The results suggest that these layers, produced using the new hybrid processes, exhibit a high potential for improving cardiac implant properties. The article is based on research carried out by the authors and the interpretation of the obtained results is made on the basis of literature data regarding the surface layers of titanium oxides and titanium nitride produced by various methods.
PL
Choroby układu krążenia są jedną z głównych przyczyn śmiertelności u ludzi. Biozgodność i inne właściwości implantów kardiologicznych, wytwarzanych z tytanu i jego stopów, można kształtować, stosując różne metody inżynierii powierzchni. W pracy przedstawiono charakterystykę wielofazowych, dyfuzyjnych warstw powierzchniowych typu TiN + Ti2N + α-Ti(N) oraz TiO2 + TiN + Ti2N + α-Ti(N) wytwarzanych w niskotemperaturowej plazmie na stopie tytanu Ti6Al4V, także z wykorzystaniem aktywnego ekranu, pod kątem ich mikrostruktury, topografii powierzchni, twardości, stanu naprężeń własnych, odporności na korozję i zużycie, zwilżalności oraz właściwości biologicznych, takich jak: adsorpcja białek — fibrynogenu i albuminy oraz adhezja płytek krwi podczas inkubacji z ludzkim osoczem i osoczem bogatopłytkowym. Przedstawiono także wyniki badań warstw typu TiO2 oraz a-CNH + TiO2 wytwarzanych na stopie z pamięcią kształtu NiTi. Artykuł prezentuje wyniki badań przeprowadzonych przez autorów, a interpretacji uzyskanych wyników dokonano w porównaniu z danymi literaturowymi dotyczącymi powierzchniowych warstw złożonych z tlenku tytanu i azotku tytanu wytwarzanych różnymi metodami.
Rocznik
Strony
130--139
Opis fizyczny
Bibliogr. 67 poz., fig., tab.
Twórcy
  • Faculty of Materials Engineering, Warsaw University of Technology
autor
  • Faculty of Materials Engineering, Warsaw University of Technology
autor
  • Institute of Metallurgy and Materials Science Polish Academy of Science, Cracow
autor
  • The Children’s Memorial Health Institute, Warsaw
autor
  • Faculty of Materials Engineering, Warsaw University of Technology
  • The Children’s Memorial Health Institute, Warsaw
Bibliografia
  • [1] Brunette D. M., Tengvall P., Textor M., Thomsen P.: Titanium in medicine. Springer-Vertag, Berein, Heidelberg (2001).
  • [2] Ellingsen J. E., Lyngstadaas S. P.: Bio-implant interface. CRC Press, Boca Raton, London (2003).
  • [3] Yoshinitsu O., Emiko G.: Comparison in metal release from various metallic biomaterials in vitro. Biomaterials 26 (2005) 11÷21.
  • [4] Okazaki Y., Rao S., Yto Y.: Corrosion resistance, mechanical properties, corrosion fatigue strenght and cytocompatibility of new Ti alloys without Al and V. Biomaterials 19 (1998) 1197÷1215.
  • [5] Dion I., Baguey C., Monties J., Havlik P.: Haemocompatibility of Ti6Al4V alloy. Biomaterials 14 (1993) 122÷126.
  • [6] Bakir M.: Haemocompatibility of titanium and its alloys. Journal of Biomaterials Applications 15 (2012) 3÷15.
  • [7] Karagkizoki V. C., Logothetidis S. D., Kassvetis S. N.: Nanomedicine for the reduction of the thrombogenicity of stent coatings. International Journal Nanomedicine 5 (2010) 239÷248.
  • [8] Smith E. J., Jain A. K., Rothman M. T.: New developments in coronary stent technology. Journal of Interventional Cardiology 19 (2006) 493÷499.
  • [9] Takemoto S., Yamamoto T., Tsuru K., Hayakawa S., Osaka A., Takashima S.: Platelet adhesion on titanium oxide gels: effect of surface oxidation. Biomaterials 25 (2004) 3485÷3492.
  • [10] Grant D. M., McColl I. R., Golozar M. A., Wood J. V.: Plasma assisted CVD for biomedical applications. Diamond and Related Materials 1 (1992) 727÷730.
  • [11] Liu X. Y., Chu P. K., Ding C. X.: Surface modification of titanium, titanium alloys, and related materials for biomedical application. Materials Science and Engineering R 47 (2004) 49÷121.
  • [12] Wierzchoń T., Ossowski M., Borowski T., Morgiel J., Czarnowska E.: Oxynitrided surface layer produced on Ti6AL4V titanium alloy under low temperature glow discharge conditions for medical applications. American Institute of Physics Conference Proceedings 1315 (2011) 1377÷1382.
  • [13] Lackner J. M.: Industrially-scaled hybrid pulsed laser deposition at room temperature. Habilitation Thesis, Polish Academy of Sciences – Institute of Metallurgy and Materials Science, Krakow, Poland (2005).
  • [14] Dearnaley G., Arps J. H.: Biomedical applications of diamond-like carbon (DLC) coatings. Surface and Coatings Technology 200 (2005) 2518÷2524.
  • [15] Leng X. Y., Yang P., Chen Y. J., Sun H., Wang J., Wang G. J., Huang N., Tiana X. B.,. Chu P. K.: Fabrication of TiO/TiN duplex coatings on biomedical titanium alloys by metal plasma immersion ion implantation and reactive plasma nitridling/oxidation. Surface and Coatings Technology 138 (2001) 296÷300.
  • [16] Borowski T., Sowińska A., Ossowski M., Czarnowska E., Wierzchoń T.: The process of glow discharge assisted oxynitriding of titanium alloy in aspect of its application in artificial heart components. Inżynieria Materiałowa 3 (2010) 751÷755 (in Polish).
  • [17] Van Oeveren W., Schoen P., Maijers C. A.: Hemocompatibility of stents. Progress in Biomedical Research 4 (17) (1999) 17÷22.
  • [18] Lelątko J., Goryczka T., Wierzchoń T., Ossowski M., Łosiewicz B., Morawiec H.: Structure of low temperature nitrided/oxynitrided layer fordem on NiTi shape memory alloys. Solid State Phenomena 163 (2010) 127÷130.
  • [19] Caves J. M., Chaikof E. L.: The evolving impact of microfabrication and nanotechnology on stent design. Journal of Vascular Surgery 44 (6) (2006) 1363÷1368.
  • [20] Khang D., Lu J., Yao C.: The role of nanometer and sub-micron surface futures on vascular and bone cell adhesion on titanium. Biomaterials 29 (2008) 970÷974.
  • [21] Witkowska J., Sowińska A., Czarnowska E., Płociński T., Borowski T., Wierzchoń T.: NiTi shape memory alloy oxidized in low temperature plasma with carbon coating: Characteristic and a potential for cardiovascular applications. Applied Surface Science 421 (2017) 89÷96.
  • [22] Witkowska J., Sowińska A., Czarnowska E., Płociński T., Kamiński J., Wierzchoń T.: Hybrid a-CNH + TiO2 + TiN-type surface layers produced on NiTi shape memory alloy for cardiovascular applications. Nanomedicine 12 (18) (2017) 2233÷2244.
  • [23] Maitz M. F., Pham M., Wieser E.: Blood compatibility of titanium oxides with various crystal structure and element doping. Journal of Biomaterials Applications 17 (2003) 303÷319.
  • [24] Gonsior M., Borowski T., Czarnowska E., Sanak M., Kustosz R., Ossowski M., Wierzchoń T.: Thrombogenicity of Ti(N, C, O) diffusive coating layers developer on titanium alloy as the blood contact surface. European Cells & Materials 19 (1) (2010) 12÷17.
  • [25] Lelątko J., Goryczka T.: Modyfikacja stopów NiTi wykazujących pamięć kształtu. Oficyna Wydawnicza Wacław Walasek, Katowice (2013), in Polish.
  • [26] Czarnowska E., Morgiel J., Ossowski M., Major R., Wierzchoń T.: Microstructure and biocompatibility of titanium oxides produced on nitrided surface layer under glow discharge conditions. Journal of Nanoscience and Nanotechnology 11 (1)0 (2011) 8917÷8923.
  • [27] Burakowski T., Wierzchoń T.: Surface engineering of metals, principles, equipment, technologies. CRC Press, Boca Raton, London, New York (1999).
  • [28] Zhecheva A., Sha W., Malinov S., Long A.: Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface and Coatings Technology 200 (7) (2005) 2192÷2207.
  • [29] Chlanda A., Witkowska J., Morgiel J., Nowińska K., Choińska E., Swieszkowski W., Wierzchoń T.: Multi-scale characterization and biological evaluation of composite surface layers produced under glow discharge conditions on NiTi shape memory alloy for potential cardiological application. Micron 114 (2018) 14÷22.
  • [30] Lelątko J., Lekston Z., Freitag M., Wierzchoń T., Goryczka T.: Influence of low temperature glow discharge nitriding and oxynitriding process on microstructural and shape memory effect in NiTi alloy. Inżynieria Materiałowa 4 (2012) 256÷261 (in Polish).
  • [31] Ossowski M., Tarnowski M., Borowski T., Brojanowska A., Wierzchoń T.: Azotowanie z ekranem aktywnym jako alternatywa dla azotowania jarzeniowego tytanu i jego stopów. Inżynieria Materiałowa 33 (4) (2012) 236÷239 (in Polish).
  • [32] Czarnowska E., Sowińska A., Borowski T., Lelątko J., Oleksiak J., Kamiński J., Tarnowski M., Wierzchoń T.: Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding. Applied Surface Science 334 (2015) 24÷31.
  • [33] Wierzchoń T., Czarnowska E., Grzonka J., Sowińska A., Tarnowski M., Kamiński J., Kulikowski K., Borowski T., Kurzydłowski K. J.: Glow discharge assisted oxynitriding process of titanium for medical application. Applied Surface Science 334 (2015) 74÷79.
  • [34] Mc Alarney M. E., Oshiro M. A., McAlarney C. V.: Effects of titanium dioxide passive film crystal structure, thickness and crystallinity on c3 adsorption. The International Journal of Oral & Maxillofacial Implants 11 (1996) 73÷80.
  • [35] Zhang L., Chen D., Wang K., Yu F., Huang Z., Panet S.: Blood compatibility improvement of titanium oxide film modified by doping La2O3. Journal of Materials Science: Materials in Medicine 20 (2009) 2019÷2023.
  • [36] Huang N., Yang P., Leng Y. X., Chen J. Y., Sun H., Wang J., Wang G. J., Ding P. D., Xi T. F., Leng Y.: Hemocompatibility of titanium oxide films. Biomaterials 24 (2003) 2177÷2187.
  • [37] Wilson C. J., Clegg R. E., Leavesley D. I., Pearcy M. J.: Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Engineering 11 (1) (2005) 1÷18.
  • [38] Sowińska A., Czarnowska E., Tarnowski M., Witkowska J., Wierzchoń T.: Structure and hemocompatibility of nanocrystalline titanium nitride produced under glow-discharge conditions. Applied Surface Science 436 (2018) 382÷390.
  • [39] Skrzypek S. J., Tarnowski M., Goły M., Borowski T., Wierzchoń T.: Analiza fazowa i stan naprężeń własnych w warstwach azotowanych na stopie tytanu Ti6Al4V wytwarzanych w niskotemperaturowej plazmie. Inżynieria Materiałowa 34 (6) (2013) 872÷875 (in Polish).
  • [40] Wierzchoń T., Czarnowska E., Morgiel J., Sowińska A., Tarnowski M., Rogulska A.: The importance of surface topography for the biological properties of nitrided diffusion layers produced on Ti6Al4V titanium alloy. Archives of Metallurgy and Materials 60 (3) (2015) 2153÷2159.
  • [41] Czarnowska E., Morgiel J., Ossowski M., Major R., Sowińska A., Wierzchoń T.: Microstructure and biocompatibility of titanium oxides produced on nitrided surface layer under glow discharge conditions. Journal of Nanoscience and Nanotechnology 10 (2011) 8917÷8123.
  • [42] Fleszar A., Wierzchoń T., Kine S. K., Sobiecki J. R.: Properties of surface layers produced on the Ti6Al3Mo2Cr titanium alloy under glow discharge conditions. Surface and Coatings Technology 131 (2000) 62÷65.
  • [43] Courtney J. M., Lamba N. M., Sundaram S., Forbes C. D.: Biomaterials for blood-contacting applications. Biomaterials 15 (1994) 737÷744.
  • [44] Kim S. W., Ebert C. D., McRea J. C., Briggs C., Byun S. M., Kim H. P.: The biological activity of antithrombotic agents immobilized on polymer surfaces. Annals of the New York Academy of Sciences (1983) 416 513÷524.
  • [45] Sakiyama-Elbert S. E.: Incorporation of heparin into biomaterials. Acta Biomaterialia 13 (2013) 437÷446.
  • [46] Fukamachi K.: New technologies for mechanical circulatory support: current status and future prospects of CorAide and MagScrew technologies. Journal of Artificial Organs 7 (2) (2004) 45÷57.
  • [47] Ishikara K., Oshida H., Endo Y., Ueda T., Watanabe A., Nakabayashi N.: Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. Journal of Biomedical Materials Research 26 (12) (1992) 1543÷1552.
  • [48] Von den Mark K., Park J., Bauer S.: Nanoscale engineering of biomimetic surface: cues grom the extracullar matrix. Cell and Tissue Research 339 (2010) 131÷153.
  • [49] Khang D., Carpenter J., Chun Y. W., Pareta R., Webster T. J.: Nanotechnology for regenerative medicine. Biomedical Microdevices 12 (4) (2010) 575÷587.
  • [50] Schmidt R. C., Healy K. E.: Controlling biological interfaces on the nanometer length scale. Journal of Biomedical Materials Research 90 (2008) 1252÷1261.
  • [51] Bulterieri S., Pasqui D., Migliori M.: Endothelization and adherence of leucocytes to nanostructured surfaces. Biomaterials 25 (26) (2004) 2731÷2738.
  • [52] Sowińska A., Borowski T., Ossowski M., Wierzchoń T., Czarnowska E.: Biological activity of vascular endothelial cells on the nitrided surface. Inżynieria Materiałowa 3 (2012) 202÷207 (in Polish).
  • [53] Mohan C. C. , Sreerekha P. R., Divyarani V. V., Nair S., Chennazhi K., Menon D.: Influence of titania nanotopography on human vascular cell functionality and its proliferation in vitro. Journal of Materials Chemistry 22 (2012) 1326÷1340.
  • [54] Kriparman R., Aswath P., Zhou A., Tang L., Nguyen K. T.: Nanotopography: Cellular response to nanostructured materials. Journal of Nanoscience and Nanotechnology 6 (2006) 1905÷1919.
  • [55] Zinger O., Anselme K., Denzer P.: Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scaleresolved topography. Biomaterials 25 (2004) 2695÷2711.
  • [56] Sunny M. C., Sharma C. P.: Titanium-protein interaction: change with oxide layer thickness. Journal of Biomaterials Applications 5 (1991) 89÷98.
  • [57] Huang N., Chen Y. R., Liu X. H.: In vitro investigation of blood compatibility of Ti with oxide layer of rutile structure. Journal of Biomaterials Applications 8 (1994) 404÷412.
  • [58] Chen J. Y., Leng Y. X., Tian X. B., Wang L. P., Huang N., Chu P. K., Yang P.: Antithrombogenic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti(Ta(+5))O2 thin films. Biomaterials 23 (2002) 1545÷1552.
  • [59] Witkowska J., Kamiński J., Płociński T., Tarnowski M., Wierzchoń T.: Corrosion resistance of NiTi shape memory alloy after hybrid surface treatment using low-temperature plasma. Vacuum 137 (2017) 92÷96.
  • [60] Owens D. K., Wendt R. C.: Estimation of the surface free energy of polymers. Journal of Applied Polymer Science 13 (1969) 1741÷1747.
  • [61] Brammer K. S., Oh S., Gallagher J. O., Jin S.: Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Letters 8 (3) (2008) 786÷793.
  • [62] Pareta R. A., Reising A. B., Miller T., Storey D., Webster T. J.: Increased endothelial cell adhesion on plasma modified nanostructured polymeric and metallic surfaces for vascular stent applications. Biotechnology and Bioengineering (2009) 103 459÷471.
  • [63] McGuigan A. P., Sefton M. V.: The influence of biomaterials on endothelial cells thrombogenicity. Biomaterials 28 (2007) 2547÷2571.
  • [64] Kirkpatrick C. J., Kampe M., Fischer E. G., Rixen H., Richter H., Mittermayer C.: Differential expansion of human endothelial monolayers on basement membrane and interstitial collagens, laminin and fibronectin in vitro. Pathiobiology 58 (1990) 221÷225.
  • [65] Form D. M., Pratt B., Madri J. A.: Endothelial cell proliferation during angiogenesis. In vitro modulation by basement membrane components. Laboratory Investigation 55 (1986) 521÷530.
  • [66] Bruni S., Martinesi M., Stio M., Treves C., Bacci T., Borgioli F.: Effects of surface treatment of Ti6Al4V titanium alloy on biocompatibility in cultured human umbilical vein endothelial cells. Acta Biomaterialia 1 (2005) 223÷234.
  • [67] Kustosz R., Altyntsev I., Darlak M., Wierzchoń T., Tarnowski M., Gawlikowski M., Gonsior M., Kościelniak-Ziemniak M.: The TiN coatings utilisation as blood contact surface modification in implantable rotary left ventricle assist device Religaheart Rot. Archives of Metallurgy and Materials 60 (3) (2015) 2253÷2260.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-905364e6-b68c-40a9-b55c-2e5d6b5141fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.