Fault-tolerant algorithm for a mobile robot

solving a maze

Adam Srebro

Warsaw University of Technology, Warsaw, Poland

Maze solving problem has been considered since the ancient times. In robotics community this problem is widely known from
the "All Japan Micromouse Competition”. In this paper the author has extended the maze solving problem of cases when some
robot distance sensors have been damaged. A new fault-tolerant algorithm for a mobile robot solving a maze is proposed. A dedi-
cated simulator has been designed and written in Java to compare several maze solving algorithms for different combination of

sensors failures.

Key words: fault-tolerant, flood fill, maze solving, mobile robot, simulator.

Introduction

The maze is a symbol linked to the old Greek myth that
spoke of the Athenian hero Theseus, who descended into
a dangerous labirynth at Crete to fight with Minotaur
and save his people from a horrific end [16]. Maze sym-
bol has been presented in the architecture, religion and
music since the ancient times [6,16].

The concept of the Micromouse as a maze solving
robot was firstly introduced by the IEEE Spectrum Mag-
azine in 1977.

The first World Micromouse Competition was held
in Japan (Tsukuba) in 1985. Nowadays the biggest mi-
cromouse competitions so called "All Japan Micromouse
Competition”, are held in Japan in two categories. The
first is "Classic Micromouse” where robots solve a 256
(16x16) cells maze. A single cell consists of 18x18 cm base
and 5cm high walls (1,2 em thick). The second category is
“Half-size Micromouse” introduced in 2009 where the
maze has been expanded to 1024 (32x32) cells [8].

A micromouse is a autonomous mobile robot de-
signed to solve the maze. A robot has to be able to explore
the maze with goal searching to solve the maze. Some
basic exploration methods and their modifications are
known, however, none of them considers the possibility
of robot distance sensors failures [1,10,15,17]. The cor-
rect information from the process of exploration is nec-
essary for robot path planing. Typically, the shortest path
is determined in terms of distance or time. For this pur-

pose the most commonly used algorithm is Djikstras

algorithm or slightly faster Flood fill algorithm [10].
Fault-tolerant control systems have been developed,

especially in aeroplanes [7] and industry [12]. In mobile

robotics this problem is becoming an important factor
because of the rapidly increasing number of sensors in the
environment perception system. Although the algorithms
and methods for determining the position or the path
planning are still evolving there is a great need to ensure
the safe operation of robots. Reflections on the failures

of actuators can be found in article [9].

The case of partial degradation of absolute positioning

system has been considered in the previous paper [14].
This article focuses on the problem of obstacle detec-

tion sensors failures and proposes an algorithm that in-

creases the safety of the robot operation.
In this paper the author makes the following contri-
butions:

* proposing fault-tolerant algorithm for a mobile robot
solving a maze. This algorithm includes any variances
of indexes of the damaged sensors and it can be ap-
plied in obstacles detection system equipped with any
number of sensors,

* designing dedicated simulator in Java for micromouse
robot operating in the presence of distance sensors
faults.

The paper is organized as follows. Section 1 gives

a brief overview of a few widely used maze mapping al-

gorithms with goal searching. Section 2 describes an al-

(2]
O
-—
o
QO
®)
(a4
e
c
O
c
®)
-—
O
S
&)
—
=)
<
(2]
=
c
O
-
O
s

Adam Srebro

gorithm for finding the shortest path from a mapped area
of the maze. A new faulttolerant algorithm for a mobile
robot solving a maze is presented in Sect. 3. Section 4
contains the simulations results for the failures of selected
sensors. Finally, I conclude the paper in Sect. 5.

1. Maze mapping algorithms with goal
searching

Mapping the maze is to memorize the location of the ex-
isting walls for each visited cell. To shorten the simulation
time, I have assumed that the robot maps the maze undil
it reaches the goal. Time of the first run from the starting
position to the goal is often called a search time. After
reaching the goal by the robot, the shortest path to the start-
ing point is determined. In the second run the robot moves
along the shortest path from mapped maze cells.

In the examples the author consider the shortest dis-
tance, but it may not be the shortest travel time path. To
determine it we must also enter a preferred direction of

240 241 242 J42 I44 245 246 24T Z4@ J49 I50 251 P52 752 D54 I5S

ZId |225 228 |227 278 |225 30 231 P32 I3 I3d 235 P36 F3T P38 133
208 209 (210 211|212 213 21(|215 226|22? "‘.EB|215 220|221 222|223
I82 (282 194 195 195|297 (292 199|200 201 |202 202 (Z04 205|208 |207
I76 177 178|179 180 |1F1 (287 (282 184|185 186|187 I8P (189 150|181
160 161|282 153?265 166 167|268 1863 170|271 272 172|174 |175

E44 (245|246 147|148 (249 ISE‘|151 1527|152 154 155 155 157|158 |159

IZR (229 130|121 1327|1323 13‘|135 136|127 138 139 R40 (241|247 |242

0 l*
112|222 |224 115|116 |227|21@ 119 120|121 |122 123|124 (125|126 |127

& 97 92 | 99 100|102 |I02 102 104 105 106 107|108 |109 210|111

g0 @1 @7 |@F|Ed|E5 | @5 @7 @F @9 SO0 §1 IF |92 4| A5

FE|(FE| 77 TR | 7R

48 49 50 |51 | 52| 53 | 54 55 | 57 5@ | 59 &0 | 61 &2 | &2

55
37 3@ 35 |40 41 | 4T 42 | 44 45 | 45 | 4T
20 21 |22 23 X4 25 26 27 e 2| |22

4 | 5 & 7 g] 0 1 12 12|14 1%

&4 B5 S5 | &7 | &8 | &8 T TR TR TR O

32 323 34 35|38

Figure 1: Indexing of the maze cells.

Algorithm 1: Right hand algorithm

Input : Measured values from sensors
Output: Control the direction of motion of the robot

1 while (goal == false) do
2 if (turnright == true) then
3 ‘ rotation (- 1, 90) ;
4 else if (goforward == true) then
| //do nothing;
5 else if (turnleft == true) then
6 ‘ rotation (1, 90) ;
else
7 | rotation (- 1,180) ;
end
8 goForwardOneCell();
end

movement as a movement straight ahead and enter the
weight coecients for the cells in which the robot can only
turn. These values are usually determined experimentally
for a given robot.

1.1. The wall follower algorithms

The goal searching can be performed based on the naive
algorithms that use the right or left hand rule, as shown
in Figure 2.

However, these simple algorithms do not allow to
solve mazes, where the central square (target) is not con-
nected with the walls of the banks of the maze.

The Algorithm 1 concerns the case when we use the
right hand rule. If the robot cannot turn right then in the
next step the ability to drive straight ahead is checked. In
the third step the possibility to turn left is checked and if
none of these movements can be executed, the robot is
returned. Similarly, works the left hand algorithm, but
this time the sequence of checking the possibility of turn-
ing on the right and left has been reversed.

1.2. Flood fill algorithm

Flooding algorithm is based on the phenomenon of pour-
ing the liquid on the plane which spreads evenly in all di-
rections if there are no obstacles.We start flooding from
the goal point (from the center of the maze). At the be-
ginning we do not have any knowledge of the maze struc-
ture and we pour the maze as if it was an empty square.
Figure 3a shows the second flooding step and Figure 3b
step in which all maze was flooded. In the first step blocks
neighbouring with four goal blocks are flooded in the
horizontal and vertical directions. The values of blocks
flooded in step 1 are set to 1 and it is the first level of
flooding as in figure 3a. In other words, the current step
of flooding inundated neighbouring blocks are blocks
from the previous step.

Iterative process of increasing values of blocks flooded
in the following steps is continued until all the maze is
flooded.

Block diagram of the flooding algorithm for the entire
maze is shown in Figure 4. For a single block with a given
level of flooding (current step), flooding is reduced to
check if we can pour four neighbouring blocks in a hor-
izontal and vertical direction as shown in Figure 5.

Assuming that the cells of the maze are indexed from
0 to 255 as shown in Figure 1 we can easily find neigh-
bouring blocks for all maze blocks. We flooding only
those blocks that have not yet been flooded (with values
0) and without the walls that block the flow of liquid as
shown in block diagram in Figure 5. If a neighbouring
block meets these requirements then it is flooded.

It means that block receives value greater by one than
the value of the block, from which it was flooded and its
index is stored in the array and checked in the next step

Fault-tolerant algorithm for a mobile robot solving a maze

theta = 269

B2 | 79 TEI

- I 7T TE

-2 -1 =-1|-1|-2 |51 |52 53 S54& 55 S5 S7 | -1 |-1 -1| -1
-2 -1 -1]|-2]|-2|-2]-2 -1 ~-1|-2 -2|58 S84 -2 -1]-2

75 T4

43 § 22

- -1|-1 =-1]|-1 [#42 23|2¢ ESIR‘E 28 32 33

23|25

27 Ijﬂ a1

3 y24-2 -1 -1 -1 -1 -1 -1 &e2f-1]-2

-:lisl |

IT! 70 B9 ER &7 EB5 &5 &F (B3 | -1 -I

run Il stop reset
. — . A B Cc D
speed i right rule 92 0 0 0
0 20 40 60 80 100
) leftrule 0 0 0]
Japan Micromouse 2008 |« O random |0 0 0 0
) floodfill 0 0 0 0

i® front

-

Figure 2: Maze solving using the right hand algorithm.

w0 left (@ right

=
=
=
=
=
=
=
=
=
o
o
o
o
o
o
o

14 12 12 11 10 3 g 7 7 g E) 0 11 12 12 14

2]
O
—
o
Q
O
(a4
O
c
O
c
o
-—
O
S
O
—
-
<
(%2)
. 2
c
O
<
O
s

Figure 3: Initial flooding of the maze: a) the second step of flooding, b) maze completely flooded.

Adam Srebro

Initialization (indexes 4 blocks
from which we start flooding)

while(not all labyrinth was
flooded)

flooding of 4
neighboring blocks

for each block of a given
level of flooding

another level of flooding
floodingIndex++

Figure 4: Block diagram of the flooding algorithm for the
entire maze.

of flooding. Using flooding during the mapping and goal
searching algorithm make the robot quickly heading for
the center of the maze.To reduce the simulation time it
was assumed that the robot maps the maze until it reaches
the goal. This diagram shows that the robot detects the
current cell wall and then checks whether there is a neigh-
bouring block with a lower or equal value where it can go
as shown in Figure 6. Flooding maze begins only when all
the neighbouring blocks have higher values then the block
in which the robot is currently located. This operation
changes the current values of maze blocks and sets a new
route to a goal in the direction of decreasing values.

2. Finding the shortest path from a mapped
area of the maze

After reaching the goal the last flooding occurs and the
shortest path linking the starting point with the goal from
the mapped part of the maze is determined as shown in
Figure 9b (second drive). The maze flooding is based on
the flood fill algorithm which block diagram is shown in
Figure 4.

3. Fault-tolerant algorithm

A designed algorithm is resistant to sensors failures in any
configuration. For a proper operation of the algorithm
the following assumptions have to be met: detection sys-
tem is able to determine which sensors are damaged, as-
sumptions we denote the set of vectors representing all
the sensors as S4.

(1)

Flood this block and
add its index to check

Can we flood the right
neighboring block?

Can we flood the left
neighboring block?

Flood this block and
add its index to check

Flood this block and
add its index to check

Can we flood the upper
neighboring block?

Flood this block and
add its index to check

Can we flood the bottom
neighboring block?

End

Figure 5: Block diagram of the flooding function of neigh-
bouring cells.

:

Flood entire maze

l<
v
Read the values of the 3 sensors
and store them on a 3 younger
bits of variable sensorin the order:
right, top, left

'

Depending on the current angle
of rotation of the robot and variable
sensor record in tabMappedMaze[Index]|
mapped block (detected walls:
right, upper left, bottom)

f there is neighboring block
which is not separated by a wall
which value = value of the block
in which the robot is

Go to this neighbor
(move by one block)

If the robot reached the goal

Figure 6: Mapping the maze with goal searching (flood fill
algorithm).

Among this set we can identify a subset S of the vec-
tors representing the damaged sensors

- > >
SF = {Sl*’ 52*, cee Sm*}
)
We assumed earlier that at least one sensor must be
working to allow the robot to continue to solve the maze

Fault-tolerant algorithm for a mobile robot solving a maze

SFrCSa
3)

The symmetrical arrangement of sensors at a certain
angle, as shown in Figure 7, is often used in commercial
applications.

This arrangement of the sensors provides an easy way
to measure the values at the positions of faulty sensors by
making rotation by an angle 6

$ =R, = cos —sind 5
" " sinf cosf |

(4)
The most common failure in practice is a single sensor
failure.
For such a case the algorithm can be simplified to per-
form the following steps:
1. Find the nearest neighbour of faulty sensor (the clos-
est working sensor).
2. Perform the rotation of the selected sensor in the po-
sition of the faulty sensor.

AY

sensor 2
Sn—l 5_';
e 8y & -
5, 5. | X

Figure 7: Symmetrical arrangement of the sensors vectors.

Algorithm 2: Fault-tolerant algorithm for single sensor failure

Input: Faulty sensor index (FsIndex)
Output: Measurement at the position off aulty sensor
(mArray[FsIndex])

1 if (FsIndex == s,) then
2 rotation (1, 6) ;
3 mArray[FsIndex] = getSensorValue(FsIndex-1)
4 rotation (- 1, 6) ;
else

rotation (- 1, 6) ;
6 mArray[FsIndex] = getSensorValue(FsIndex +1)
7 rotation (1, 6) ;

end

w

3. Make measurement at this position.
4. Turn back to the original position.

After performing the above actions the robot can con-
tinue its mapping algorithm.

Algorithm 3: Fault-tolerant algorithm for multiple sensors
failures

Input: Set ofi ndexes off aulty sensors
Output: Measurements at the positions off aulty sensors

(mArrayl[])

findMaxMinIndexes(); //find (FsIndex .y, FsIndex i) ;
NumberOfFaultySets = findAllSetsOfFaultySensors();
foreach (i < NumberO fFaultySets;i++) do
FaultySet[0][i] = findSmallestSetIndex(i);
FaultySet[1][i] = findNumberOfElements(i);

I N S

end

if (FsIndex may == sp) M (FsIndex i, == s1) then
k direction = 2;

else if (FsIndex .« == s,) then

O o N

k direction = 1;
else
10 | direction = -1;

end
11 foreach (i < NumberO fFaultySets;i++) do
12 if (direction== 1) then
13 nearestActiveNeighbourIndex[0][i]
14 FaultySet[0][i]-1;
15 se if (direction==-1) then
16 nearestActiveNeighbourIndex[0][i] =
17 FaultySet[0][i] + FaultySet[1][i] ;
else
18 if (i== 0) then
19 nearestActiveNeighbourIndex[0][i] =

[¢)]

20 FaultySet[0][i] + FaultySet[1][i];

21 nearestActiveNeighbourIndex[1][i] =-1;
else

22 nearestActiveNeighbourIndex[0][i] =

23 FaultySet[0][i]-1;

24 nearestActiveNeighbourIndex[1][i] =1;
end

end

end
25 Ls=findLargestSetOfFaultySensors();
26 sLs = findSecondLargestSetOfFaultySensors();
27 if (direction | 2) then

28 foreach (i< Ls;i++)do
29 rotation(direction , 6);
30 getSensorsValues();
end
31 rotation(- direction, O Ls);
else
3 rightSetLimit = FaultySet[1][0];
33 foreach (i < rightSetLimit; i+ +) do
34 rotation(-1, 6);
35 getSensorsValues();
end
36 rotation(1, O rightS etLimit);

37 if (rightSetLimit== Ls) then

38 i numberOfTurns=sLs;
else
39 | numberOfTurns=Ls;
end
40 foreach (i < numberOfTurnsi+ +) do
41 rotation(1, 6);
42 getSensorsValues();
end
43 rotation(- 1, 8 numberO f T urns);

end

2]
O
—
o
Q
O
(a4
O
c
O
c
o
-—
O
S
O
—
-
<
(%2)
. 2
c
O
<
O
s

Adam Srebro

a b c
AY AY AY
FaultySet Fslndex,,, — Fsindex,,,
el
i
2 AN \
S 5, / / Su-1 5, ST 5,
_FONAE Y O YOOy - voNoy .
*n 51 X R Sn Sy X Sy 8 X
Fslnkélexmt Fslnc;(axmm Es]ﬁ}jexmm Fsln aexm,n

. active sensor

O faulty sensor

Figure 8: Characteristic cases of sensors failures: a) boundary sensors failures, b) sensor failure at index n, c) sensor failure

at index 1.

Algorithm 2 shows the fault-tolerant algorithm for
a single sensor failure. An input argument of this algo-
rithm is faulty sensor index. The output result of this al-
gorithm is a cell of array containing the measurement at
the position of a faulty sensor. The gerS ensorValue func-
tion performs the measurement using a sensor with the
index contained in the argument.

If more than one sensor is faulty then for each of them
measurements are made at the correct position by work-
ing sensors.

In this case, the algorithm includes the following

steps:
1. Find the maximum and minimum index (Fs/ndex,,,.;
FsIndex,,,,) from the set of all damaged sensors.

2. Find the smallest index for each set of damaged sen-
sors and the number of its elements.

3. Compare indexes (Fs/ndex,,,; FsIndex,,,) with in-
dexes limit s, and s,. Based on this comparison set the
initial direction of rotation.

4. For each set find the nearest working (active) neigh-
bour based on the direction of rotation.

5. Assign each active nearest neighbour connected with
the given set a number of measurements to do and
the direction.

6. DPerform the number of turns in a given direction
equal to the number of elements of the largest set of
damaged and neighbouring sensors. After each rota-
tion the values of selected sensors are measured if they
are in positions where the damage occurred.

7. For the special case (Fslndex,,,, = s,; Fslndex,,, = s;)
after the rotation and measurements in a given direc-
tion a robot turns back to the original position. Then

it continues to rotate in this direction performing

measurements until all signals at the position of faulty

sensors are measured.

Figure 8 shows characteristic cases of sensors failures.
These three characteristic cases determine the choice of
the direction of rotation according to the Algorithm 3
(lines of code 6-10).

For case 8b the default direction of rotation is a left
direction and for the case 8c is a right direction. This fol-
lows from the fact that in both cases one of the boundary
sensors is damaged and rotation is performed in its direc-
tion. The number of turns is equal to the number of ele-
ments of the largest set of faulty sensors (Ls).

The case 8a is more complicated and requires rotation
in both directions as shown in Algorithm 3 (lines 31-41).
Due to the fact that both boundary sensors are damaged
rotation in the direction of one of them does not allow
to perform measurements on the second (using the short-
est angular distance). To perform measurements at all po-
sitions of damaged sensors we should divide this task into
two stages. In the first stage, we rotate a robot to the right
until an active sensor reach the position at index 1. Then
we turn a robot back to its original position. In the sec-
ond step we rotate a robot in the opposite direction than
in the first stage.

In the case of 8a two of the largest sets of faulty sen-
sors are calculated (Ls and sLs). If the right boundary sen-
sor belongs to the largest faulty sensors set then number
of turns in the second phase is equal to the number of el-
ements of the second largest set. A choice of such a con-
dition allows us to perform measurements at all positions
of damaged sensors.

Fault-tolerant algorithm for a mobile robot solving a maze

a b
T = e B S S L

-1 (-2 |-1§28 17 1R 128 20 21| - 17 18 1§ 20 21
1 -1 |-1Q27 |18 1S5 ICIE’! 22 -I 15 15 14 22

-1 023 (1223 -1 13 12| =23

-I|-: -1 -1 -1 -1 § 24 Q21 Q24| -2 | 11 | 2¥

25 | -1 | | 1o | 25

26 | -1 a4 |28

27 || -2

28| -2

284 -2

-1 30 -1

a2 -2

54 53 -1 |-

55 58 -@ -1 -1 -1 -1 -1 | -2 TE 75 T4

'I'Tl-:|-1 -1 -1 |60 549 'S8 S7 -1 -:|-I -1 -1 -1 - ‘,I",I'| | &0 59 S8 57 |

Figure 9: All Japan Micromouse Competition 2010 for the case of failure of the right and left sensor: a) mapping with
goal searching b) finding the shortest path of the mapped part of the maze.

theta=10

ﬁ_

5 &4 | 41 #0 39 3@ 37 36 35 34
47 #5 | 43 42 | | | az 33
51 52 53 5& 22 23 |25 27 |3|5| a1
55 55 21 |24 25 |28 29
57 ? 20 18 |16 15 14

55 |m 17 |22 23

&1 &0 | 11 o %

53 &2] i(—:l 7 8
E5 &¢ 2 3 & 5 B

2]
O
—
o
Q
O
(a4
e
c
O
c
o
-—
O
S
O
—
-
<
(%2)
. 2
c
O
<
O
s

rumn Il stop reset

. — A B C
speed i right rule 90 83 a9
0 20 40 60 80 100
0 left rule |94 83 93
i random O y y

® flood-fill 119 73 118

Japan Micromouse 2008 |«

DDDDU

i front
w0 left - i) right

Figure 10: Finding the shortest path of the mapped part of the maze for the case of right sensor failure.

Adam Srebro

4. Simulations

A dedicated simulator has been written by the author in
Java in order to verify the proposed fault-tolerant control
algorithm.

The simulator contains a model of a robot with three
sensors symmetrically distributed in the angular distance
0f 90 degrees.

The author has assumed that there is a monitoring
and fault detection system which allows for a given time
to determine whether a sensor is working or has been
damaged.

If there is a failure of the proximity sensor, then ac-
cording to the Algorithm 2 at the position of damaged
sensor measure-ments will be performed by a nearest
working neighbouring sensor.

Simulations have been performed for several mazes
from "All Japan Micromouse Competition”. Due to the
fact that most failures occur when we power on or off the
device, we have assumed that the fault occurs from the
first moment of the simulation.

The results for the case of left and right sensor failure
for mapping and finding the shortest path tasks are
shown in Figure 9. Figure 10 shows the case of a right
sensor failure for three different control algorithms. Col-
umn A in this figure shows the distance (number of cells)
travelled by the robot during the mapping with goal
searching. Column C shows the number of turns of the
robot (turns to the measuring position) during the map-
ping with a faulty left sensor. In the last cell (goal point)
the measurement is not needed and therefore the value
in cell C is one less than in the cell A. The lengths of the
shortest paths to the goal from the mapped parts of the
maze are shown in column B and are always less than or
equal to the values in column A.

5. Conclusions

The simulations have been carried out using the Java
environment.

In this paper the fault-tolerant algorithm for a mobile
robot solving a maze has been proposed. A common
cause of improper operation of robots is a partial failure
of their obstacle detection system based on distance sensors.
In my considerations I have assumed that the robot is
equipped with fault detection and isolation subsystem, and
that information about the damaged sensors is available.

The author had two goals when designing the robust
algorithm.

The first goal has been to develop a simple algorithm
that could be quickly implemented regardless of the map-
ping and goal searching algorithms. The second goal has
been to design an algorithm taking into account any vari-
ances of indexes of the damaged sensors. As shown by
simulation results both goals have been achieved.

The algorithm has been tested with a symmetrical
arrangement of sensors, which is the most common con-
figuration used in practice. After adjustment (search for
nearest neighbor at each measuring step), the algorithm can
be also used for the asymmetric arrangement of sensors.

All simulations have been performed for maze solving
task to show the usefulness of the proposed algorithm in
the processes of mapping and obstacle avoidance. How-
ever, designed fault-tolerant algorithm can be used in
many applications of mobile robots in which the reliabil-
ity and safety are important factors. The examples of such
applications might be household robots e.g.: robotic vac-
uum cleaners and robotic movers. This algorithm could
also be applied in Urban Search And Rescue (USAR) ro-
bots [5, 11] improving their reliability. In the surveys: [3]
and [4] Carlson and Murphy have shown that the relia-
bility of mobile robots is relatively low particularly with
regard to the USAR robots and that is a real problem.
The proposed solution can be particularly useful for ro-
bots with multiple obstacles detection sensors allowing
them to continue current task in cases where some of the
sensors have been damaged.

Systems equipped with this type of algorichms are be-
coming increasingly important in applications where ro-
bots operate continuously over a long period of time, e.g.:
a museum guide robot [13] or a robot used in warchouse
automation.

References

[1] Adil M.]. Sadik , A Comprehensive and Comparative Study
of Maze-Solving Techniques by Implementing Graph Theory,
2010 International Conference on Artificial Intelligence and
Computational Intelligence.pp.52-56.

[2] Borenstein J., Everett H.R., et al. Mobile robot positioning
Sensors and techniques. Journal of Robotic Systems, 14.4
(1997): 231-249.

[3] Carlson J., Murphy R., and Nelson A. Follow-up analysis of
mobile robot failures. In Proceedings of the 2004 IEEE In-
ternational Conference on Robotics and Automation (ICRA
2004), Barcelona, Spain, 18-22 April 2004, vol.5, pp. 4987-
4994.

[4] Carlson J., Murphy R., How UGVs Physically Fail in the
Field, IEEE Transactions on Robotics, 21.3(2005): 423-437.

[5] Casper]., Murphy R. Human-robot interactions during the
robot-assisted urban search and rescue response at the world
trade center. IEEE Trans. Syst., Man, Cybern. B, 33.3(2003):
367-385.

[6] Fisher P Mazes and Labyrinths. Shire Library, 2008.

[71 Goupil P AIRBUS state of the art and practices on FDI and
FTC in flight control system. Control Engineering Practice,
19.6(2011): 524-539.

[8] Harrison P http://www.micromouseonline.com

[9]1 Ji M., et al. Hybrid Fault Adaptive Control of a Wheeled
Mobile Robot. IEEE/ASME Transactions on Mechatronics,
8.2 (2003): 226-233.

[10] Mishra, S., and P. Bande. "Maze Solving Algorithms for
Micro Mouse”. In Proc. of the IEEE International Confer-

Fault-tolerant algorithm for a mobile robot solving a maze

ence on Signal Image Technology and Internet Based Systems ~ [14] Srebro A. ”A self-tuning fuzzy PD controller for a wheeled

(SITIS *08). 30 Nov.-3 Dec. 2008, Bali, Indonesia, 2008: mobile robot operating in the presence of faults”. The Chal-
86-93. lenges of Modern Technology, 2.4(2011): 11-20.
[11] Murphy R. Trial by Fire, IEEE Robotics and Automation [15] Vladimir J. L., A Comparative Study on the Path Length Per-
Magazine, 11.3(2004): 50-61. formance of Maze-Searching and Robot Motion Planning
[12] Nou H., Theilliol D., et al. Fault-tolerant Control Systems: Algorithms. IEEE Transactions on Robotics and Automation
Design and Practical Applications. Springer-Verlag London, 1.1(1991): 57-66.
2009. [16] Wright C. The Maze and theWarrior: Symbols in Architec-
[13] Nourbakhsh I. R., The mobot museum robot installations, ture, Theology, and Music. Shire Library. Harvard University
in Proc. IEEE/RS]J IROS 2002 Workshop Robots in Exhibi- Press, 2001.
tions, 2002, pp. 14-19. [17] Zhang, X., ”A Micromouse Maze Solving Algorithm”. MCU

and Embedded System 5(2007): 84-85.

2]
O
—
o
Q
O
(a4
O
c
O
c
o
-—
O
S
O
—
-
<
(%2)
. 2
c
O
<
O
s

