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Abstract

This paper presents and discusses a conceptuaiank for risk assessment and risk management wisbre

is based on the triplet events, consequences arettamties. In addition to risk, the framework ilights the
concepts of vulnerability and resilience. An exaenpl the analysis of an LNG (Liquefied Natural Gplent is
included to demonstrate the applicability of thanfework. The proposed framework is more general tha
existing frameworks, for example the traditional pkéan & Garrick approach, and provides also new
perspectives on how to understand and describertaimtées in a risk assessment and risk management
context.

1. Introduction In this paper we provide an example to show the
main features of this risk perspective. These featu
also cover key concepts like vulnerability and
resilience. Comparisons are made with the Kaplan
and Garrick [20] perspective. Before we introduce
the case, we outline the main pillars of the (AC,U
risk perspective.

A common perspective on risk is the so-called etipl
definition based on Kaplan and Garrick [20]:

Risk is equal to the tripleti(s, ¢), where s
is theith scenario, [ds the probability of that
scenario, and;¢s the consequence of tha

scenario, i=1,2, ...N. 2. The (A,C,U) risk perspective

For wunique situations, the probabilities are We define risk by two-dimensional combination of
interpreted as subjective probabilities whereas, if[4], [8]
repeated similar situations can be generated, the

probabilities p have to be understood as relative i) events A and the consequences of these
frequency-interpreted probabilities (also referted events C, and

as chances). These probabilities are unknown, and) the associated uncertainties U (will A occur
subjective probabilities are used to express the and what value will C take?).  (I)

(epistemic) uncertainties about the true valuehef t

relative frequencies. The framework then establishe We refer to this as the (A,C,U) perspective, as

is referred to as the probability of frequency already mentioned. We may rephrase this definition

approach to risk assessment. by saying that risk associated with an activitjoide

Aven [4], [8] extends the framework by considering understood as [9]:

risk as the triplet (A,C,U), where A is the initiag

events (e.g. a leakage), C the consequences ofdA, a Uncertainty about and severity of the consequences

U the associated uncertainties (will A occur, whatof an activity ().

will the consequences C be?). Based on this risk

concept, risk is described by (A,C,P,U,K) wheresP i Here severity refers to intensity, size, extension,

a subjective probability and K is the backgroundscope and other potential measures of magnitude,

knowledge (including assumptions) that the and is with respect to something that humans value

assessments P and the uncertainties U are based on(lives, the environment, money, etc.). Losses and
gains, for example expressed by money or the
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number of fatalities, are ways of defining the sgye deterioration problem. So what is the risk asgedia

of the consequences. The uncertainties relateeto thwith hydrocarbon leakages caused by operational
events and consequences; the severity is just a wgyoblems? Given the background information of the
of characterising the consequences [9]. maintenance discipline, a 10% leakage probability
To describe the uncertainties, we use subjectivdfor a defined leakage size) is assigned. Thisbharm
(knowledge-based) probabilities. If the probability is based on relevant historical data, and doesmot
equals 0.1 (say), this means that the assess@ny respect reflect the concern of the operation’s
compares his/her uncertainty (degree of beliefuabo management. The assignment assumes that the
the occurrence of the event with the standard ofmaintenance programme will be effective. But
drawing at random a specific ball from an urn thatsurprises could occur. Production of oil over time
contains 10 balls [21]- [22]. A risk descriptiondeal leads to changes in operating conditions, such as
on this perspective includes the following elements increased production of water,$Hand CQ content,
(A,C,U,P,K), that is, risk is described by eventsla scaling, bacteria growth, emulsions, etc.: problems
consequences, associated uncertainties (whether that to a large extent need to be solved by the
will occur and what value C will take), knowledge- addition of chemicals. These are all factors caysin
based probabilities P, and K the backgroundincreased likelihood of corrosion, material britibss
knowledge that U and P are based on. Theand other conditions that may cause leakages. 8y th
probability assignments are based on hard dataassignment of 10%, we hide an important element of
expert judgments and models. uncertainty. In a risk analysis a number of such
This perspective acknowledges that risk extendgprobability assignments are performed, and the
beyond probabilities. Probability is just a tooeddo  hidden uncertainties could create surprising
express the uncertainties but is not a “perfeatil.to outcomes somewhere. You do not know where they
By restricting risk to the probability assignments will come, but they definitely could happen.

alone, aspects of uncertainty and risk are “hidden” The risk description (A,C,U,P,K) covers probability
there could be a lack of understanding about thelistributions of A and C, as well as predictionsfof
underlying phenomena, and assumptions can band C, for example a predictor C*, given by the
made bounding the space of possible events andxpected value of C, unconditionally or conditional
scenarios, but the probability assignments aloee aron the occurrence of A, i.e. C* = EC or C* = E[C|A]
not able to fully describe this status. To expliis Stochastic models (with parameters) expressing
in more detail, consider the following two examples aleatory uncertainty, i.e. variation in populatioofs
Consider the risk, seen through the eyes of a rislsimilar units, are used to ease the probability
analyst in the 1970s, related to future healthassignment. Probability models constitute the basis
problems for divers working on offshore petroleum for statistical analysis, and are considered esgent
projects. An assignment is to be made for thefor assessing the uncertainties and drawing useful
probability that a diver would experience healthinsights [17], [32]. The probability models
problems (properly defined) during the coming 30 coherently and mechanically facilitate the updating
years due to the diving activities. Let us assuinat t of probabilities in line with the Bayesian paradigm
an assignment of 1% is made. This number is baseHowever, such models need to be justified, and if
on the available knowledge at that time. Therenare introduced they are to be considered as tools for
strong indications that the divers will experience assessing the uncertainties about A and C. The
health problems. However, we know today that theseestimation of the parameters of the models is met t
probabilities led to poor predictions. Many divers end product of the analysis as in a traditionak ris
have experienced severe health problems [10], p. 7analysis [8].

By restricting risk to the probability assignments The knowledge-based (subjective) probabilities
alone, we see that aspects of uncertainty andarisk expressepistemic uncertainties, the assessor’s (lack
hidden. There is a lack of understanding about thef) knowledge about an event or an unknown
underlying phenomena, but the probability quantity. The stochastic models represent vanatio
assignments alone are not able to fully descriise th in the populations of similar units to the one &bap
status. studied. To formalise the concept of “similar’, we
As a second example, consider an offshore petroleumeed to introduce the term “exchangeability”, bort f
installation where the operations management ighe purpose of the present paper it is sufficient t
concerned about the deterioration of some criticalthink of the situations as similar. Loosely speaki
equipment. The maintenance discipline ensures thaa chance, which we denotg B8 the Bayesian term
the deterioration will not cause safety problents. | for a frequentist probability (cf. the represeruati
refers to a special maintenance programme that wiltheorem of de Finetti [13]; see Bernardo and Smith
be implemented, which will cope with the [12], p. 172. The frequentist probability used in a
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traditional statistical setting also represents aVulnerability (antonym robustness) = (C, U| A), in
“success fraction” of an infinite population. Tkiof other words, the vulnerability is the two-dimengbn
the throw of a drawing pin. The frequentist combination of consequences C and associated
probability that the pin is up is understood as theuncertainties U, given the occurrence of an initgat
fraction of throws showing pin up if the experiment event A. For example, the vulnerability of a perso
could be repeated infinitely under similar condiso  with respect to a certain virus is the potential
In theory these concepts, the chance and theonsequences of this virus and associated
frequentist probability, are not the same, but fram uncertainties (what will the consequences be?)e Th
practical point of view it is difficult to see much definition of vulnerability follows the same logas
difference [3]. that of risk. The uncertainty of various consegesnc
Chances (frequentist probabilities) &e in fact not can be described by means of probabilities, for
measures of uncertainty. They do not represent thexample for the probability that the person wilg di
analyst’s uncertainties. They are unknown quastitie from the virus attack. A description of vulneratyili
and need to be treated as such in the risk assessmethus covers the following elements:
Bayesian analysis is a common tool used for this
treatment. The idea is to firstly establish adeguat (C, U, P, K| A)
probabilistic models representing the aleatory
uncertainties, then to assess epistemic uncedainti i.e. the possible consequences C, uncertainty U,
about unknown parameters of these models byprobability P, and the background knowledge K,
assigning prior distributions, next to use Bayes’given that the initiating event A takes place. life
formula to update the uncertainties in light of newwith Aven and Renn [9], we may interpret
data to obtain the posterior distributions, anélfin ~ vulnerability in relation to the event, A, as
to obtain the predictive distribution of the quéies  uncertainty about and severity of the consequences
of interest, i.e. A and C (this predictive distrilorn is  of an activity given the occurrence of A.
epistemic, but it also reflects the aleatory When we say that a system is vulnerable, we mean
uncertainties). that the vulnerability is considered high. Thenpdé
A risk assessment is a methodology designed tdhat we assess the combination of consequences and
determine the nature and extent of risk, i.e. as#es  uncertainty to be high should the initiating evént
risk (A,C,U). It comprises the following main steps occur. If we know that the person is already in a
weakened state of health prior to the virus attaek,

1. Identification of hazards/threats/ can say that the vulnerability is high. There tsgh
opportunities (sources) probability that the patient will die.
2. Cause and consequence analysis, Vulnerability is an aspect of risk. Because obthi
including analysis of vulnerabilities the vulnerability analysis is a part of the risk
3. Risk description, using probabilities analysis. If vulnerability is highlighted in the
and expected values analysis, we often talk about risk and vulnerapilit
4. Risk evaluations, i.e. comparisons analyses.
with possible risk tolerability Resilience is closely related to the concept of
(acceptance criteria) robustness. The key difference is the initiatingre

A. Robustness and wvulnerability relate to the
Risk management comprises all co-ordinatedconsequences and uncertainties given a fixed A,
activities to direct and control an organizatiorthwi whereas resilience is open for any type of A, also
regard to risk, i.e. manage risk. Two main purposessurprising events. We may get ill due to different
of the risk management are to ensure that adequatgpes of virus attacks; also new types of virusay m
measures are taken to protect people, thée created. From this idea we define resilience as
environment and assets from undesirable
consequences of the activities being undertakesh, anResilience: (C,U|any A, including new types of A
to balance different concerns, for example safaty a
costs. Risk management covers both measures tand the resilience description:
avoid the occurrence of hazards/threats, and
measures to reduce their potential consequences. (C,U,P,K|any A, including new types of A).

Next we introduce the concepts “vulnerability” and Hence the resilience is considered high if the gers

“resilience” [5], [29]: has a low probability of dying due to any type of
virus attack, also including new types of viruses.
Resilience is about the consequences in the case of
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any ‘“attack” (virus attack) and associated resistance against the plant from the neighbours
uncertainties. We say that the system is resilfent living less than one kilometre from the plant. The
the resilience is considered high. Of course, INLNG plant is located only a few hundred metres
practice we always have to define some boundariefom a ferry terminal and this also creates
for which A’s to include. concern.
For all these definitions, the consequences C dkpenThe LNG plant is now under construction by the
on the performance of barriers (denoted B) [1581 an energy supplier Lyse. The necessary approval
to explicitly show this we write C = (B,C), redalj from local and central authorities has been
in a resilience description (B,C,U,P,K| any A, obtained. The plan is that natural gas from the
including new types of A). North Sea is transported through pipelines to
The performance of the barrier can be expressedhore, and then liquefied at the plant before it is
through the capacity of the barrier (and associatedtored in a huge tank. The LNG is then distributed
uncertainty, probability), for example the strength  from the plant to local consumers by LNG tankers
a wall. The barriers and the system performance irand LNG lorries [30]. The annual production is
general are influenced by a number of performance800,000 tons of LNG per year, but the capacity
influencing factors (PIFs), for example resources,may be increased to 600,000 tons if market
level of competence, management attitude, etc. conditions allow such an increase. The LNG plant
Analogous to risk assessment and risk managemenhas the following main components [31]: Pipeline
we define vulnerability assessment, vulnerability landfall, Gas reception facilities, Pre treatment,
management, resilience assessment and resiliendeNG production, LNG tank and Export facilities.
management (engineering), for example: In the following we will look at two potential
ways of conducting the risk assessments for this
Resilience engineering (management) comprises alblant, in line with the risk perspective descrilyed
measures and activities carried out to managedhe previous section. Some comments on how the
resilience (normally increase resilience). assessments were in fact carried out in real fide a
given throughout the discussion.
These measures and activities are based on the PIFs
For example, we may add resources or increase th®.1 An analysis approach with no chances
competence to obtain a higher level of resilience.introduced

We may exercise and avoid smoking to increase the ) ) )
resilience in case of an illness The risk assessment will be based on uncertainty

The above definition of resilience is in line withe ~ @sSessments of the “observables” A and C, so we

one given by Hollnagel [18]: the intrinsic abilioja  fIrst have to identify these. In the study two
system to adjust its functioning prior to or folimg ~ INteresting observables are:

changes and disturbances, so that it can sustain
operations even after a major mishap or in the
presence of continuous stress.

N: the number of fatalities Bparties)

D: the occurrence of an accident leading to a
fatality of person z (arbitrarily chosen).

A risk analysis following the (A,C,U) perspective

describes risk by (A,C,U,P,K), as explained above.The aim of the risk assessment is to predict these
To ensure that the risk analysis includes thequantities and to describe uncertainties. In thaisec
vulnerability and resilience dimensions, we may addthe predictions would be straightforward: there

that the risk assessment should also highlight thgvould be no fatalities and the event D would not
descriptions occur. However, there are uncertainties, and

accidents could occur, leading to deaths. To dascri
(C,U,PKI|A) and (C,U,P,K | any A, including new these uncertainties we use event tree models and
types of A). subjective probabilities. We may introduce chances
(relative frequencies), as in Section 3.2, butust
3. Application. An LNG (Liquefied Natural Gas) first assume that the analysts decide not to do so.
plant in an urban area They find that

This case study concerns the risk related to a new e . : . .
LNG plant to be located on the west coast of it is difficult to give meaningful interpretations

Norway, in an urban area (Tananger) outside the of the chances.

city of Stavanger, about 4 km from the Stavanger * the introduction of the chances makes the
Airport. Despite the formal approval according to analysis more complex, and no added value is
the SEVESO |l Directive, there is considerable identified.
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In the following we restrict attention to N. To eas The quantities, X and Z, are unknown and
the assignment of knowledge-based (subjectiveknowledge-based (subjective) probabilities are used
probabilities of N, we introduce a model g, an évento express the uncertainties (degree of belief).

tree model; see Figure 1. Here

X = number of releases (which is approximately

equal to 1 if a release occurs and O otherwiseeas w

ignore the probability of two releases in the pario
studied)

Z; = I(A) (lis the indicator function which is edl
to 1 if the argument is true and O otherwise)

Z,= 1(B)

Z3 = I(pool fire).

Z= (4, L, Zy)

We see that if a release occurs, it can eithelftrgsu
a pool fire, an explosion or no effect, dependimg o

Suppose the following assignments have been made
given the background knowledge K of the analysts:

P(X= 1) = EX = 0.005

P(Z=1)= P(A)=0.3

P(Z,=1|Z =0) = P(B| not A) = 0.2

P(Zs=1| 2 =0, Z = 1) = P(pool fire | not A,B)
=0.4.

To interpret these numbers, consider for example,
P(Z.=1). We have P@=1) = P(AIK) = 0.3, which
means that the analysts consider the uncertainty of
immediate ignition occurring (given a release) & b
the same as drawing a red ball out of an urn which

the results of the branching events, immediatecomprises ten balls of which three are red.

ignition, and delayed ignition.
The model provides four scenarios:

s release - A - pool fire

s,: release - not A — B - flash (pool) fire
s;: release - not A — B - explosion

ss: release - not A - not B - no effect.

The Z probabilities are all reflecting the
vulnerabilities (robustness) of the system given a
leakage. Resilience is not relevant to considernwhe
specifically addressing the consequences of leakage
However, focus on resilience is of course important
in order to be able to sustain operation in casEngf
type of changes or disturbances in the process that
could lead to leakages. The probability of a leakag

Assume that the number of people exposed tas strongly dependent on the resilience management.

scenario, sis vi, where y = 0, » =50 and y= 100.
Furthermore, assume that the fraction of fatalitses
d;, where d = d;= 0.1.

The model expresses that

N=g(X,2) =5X (1- 3 Z, Zs + 10(1- 2) Z,
(1-2y),

To compute the distribution of N given this inpuk
can follow the rules of probability as in the prays
section. The results are showrnTable 1.

Table 1. Probability (subjective) distribution for the
number of fatalities associated with the event tiffee

Figurel
as the number of fatalities is 5 in case of scen2yi
and this scenario occurs if (11)ZZ, Z; = 1, and the | N: number of | Probability P Econtribution
number of fatalities is 10 in case of scenarior] a | fatalities (E: Expected
this scenario occurs if (1-¥Z, (1-Zs) = 1. associated with value)
release as
Immediate defined by the
ignition A i event tree in
17 pool fire Figure 1
0 0.99930 0
X =# releases 5 0.00028 0.0014
10 0.00042 0.0042
Delayed ignition B 7. _1  pool fire The probabiliies assigned are based on
Z,=1 background knowledge K, which includes a
number of assumptions. Here are some few
N _ examples, evident from the above analysis:
ot Explosion
immediate
ignition e The event tree model
No ignition No effect * A certain number of exposed people

Figure 1. Event tree for the LNG plant case
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Examples of other assumptions made are:

« All vessels and piping are protected by the
water application like monitors, hydrants.

* Release rates are constant throughout the
release duration time.

The understanding of the physical phenomena and
the computer codes used also strongly affect the
results.

Vinnem [31] illustrates the dependencies of the
assumptions made by pointing out that the
frequency of accidents with at least 100 fatalities
increased by a factor of 56 when compared to the
results from the initial risk assessment performed
for the operator of the plant. The initial
assessment was performed before engineering
studies had started, whereas the updated study
made by the engineering contractor reflected all
the engineering details. Nonetheless, the example
clearly shows the large difference in background
knowledge.

Vinnem [31] also points to the assumption made
in the actual analysis of the plant that, in thergv

of impact of a passing vessel on an LNG tanker
loading at the quay, the gas release would be
ignited immediately, presumably by sparks
generated by the collision itself. However,
according to Vinnem [31], no explanation was
provided of how such ignition of a very heavy and
cold gas could occur physically. He concludes that
it is very hard to foresee how it could be caused i
this way. The implications of the assumption are
important for the further analysis [31]:

However, the implication of this
assumption was that it was unnecessary to
consider in the studies any spreading of
the gas cloud due to wind and heating of
the liquefied gas, with obvious
consequences for the scenarios the public
might be exposed to. Such a very critical
assumption should at least have been
subjected to a sensitivity study in order to
illustrate how changes in the assumption
would affect the results, and the
robustness of the assumption discussed.
None of this, however, has been provided
in any of the studies.

3.2 An alternative analysis approach based on
chances

Now let us assume that the analysts choose to
introduce chances:

20

p = individual risk for a specific person in the
group having the highest risk, i.e. the probability
that a specific person (arbitrarily chosen) shall b
killed due to the activity during a period of one
year

and the f-n curve, G(n), expressing the frequency
(i.e. the expected number) f of accidents thal lea

to minimum n number of fatalities, which can also

be interpreted as the chance (frequentist)
probability of an accident with at least n fatak]

le.

G(n) = B[ Y(n)],

where Y(n) denotes the number of accidents with
at least n fatalities during a period of one year.
These parameters (p and G(n)) are unknown and
need to be estimated and uncertainties assessed.
We start by addressing the problem of assessing
the uncertainties about the true value of these
parameters. The tool for this purpose is
knowledge-based (subjective) probabilities. The
approach is referred to as the probability of
frequency approach, as was noted in Section 1.

The analysis can be viewed as an application of
the Bayesian framework, which comprises the
following steps:

1. Establish a probabilistic model

2. Assign a prior distribution on the parameters of
interest

3. Use Bayes’' theorem to establish the posterior

distribution of the parameters.

To illustrate the analysis, we will use an evesnefr
as presented in Figure 2. The following parameters
are introduced:

Qo = E[X]

0. = R(A)

0. = R(B| not A)

0z = R(pool fire| not A,B)

For q and g, it is tacitly assumed that the chances
are conditional on the occurrence of a release. To
interpret the parameters we need to constructiiafin
populations of similar situations to the one stddie
For example, g represents the fraction of times
immediate ignition occurs in the case of a relaase
the situation is repeated over and over again.
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Immediate assumptions for the other parameters. See overview
ignition A in Table 2.
G pool fire
Table 2. Knowledge-based probabilities for the
X =# releases parametersdq 0 @ and g
Parameter Distribution | Interval
% = E[X] type
Delayed igniton B o ool fire o Uniform [0.003,0007]
o O Uniform [0.2,0.4]
O Uniform [0.1,0.3]
Not Explosion s Uniform [0.1,0.7]
immediate
ignition

Using these  distributions and  assuming
No ignition No effect “independent” distributions for the garameters, we
can calculate the knowledge-based distributions.for
Independence here means that if, for example, we
_ know that ¢ is equal to 0.12 (say), this would not
Figure 2. Event tree for the LNG plant case affect our uncertainty assessment pfsqy).
To establish the output distributions using anehfti
If we know all parameter values we can calculage th formulae is difficult. It is easier to use Montera
contributions to p and G(n), using standardgimylation, and this is the common approach for
probability calculus. However, all parameters areperforming this type of uncertainty assessment. In
unknown and we use knowledge-based (subjectivejnis case the analysis is simply carried out using
probabilities to express the analysts’ uncertasntie Excel sheet. Random numbers for each parameter are
about the true value of these parameters. Thigrawn from the sheet (1000 replications) and using
apalysi; is normally carried out using a Monte €arl the formular = 6/(1- cb) Gp, We obtain the associated
simulation. ~uncertainty distribution of r, shown ifiable 3 and
Let us concentrate our focus on G(1), the relativerigyre 3. Note that these values are estimatekeof t
frequency probability of at least one fatality; t0 propabilities given by the input of the Monte Carlo
simplify the notation we refer to this quantity@s sjmuylations: the uniform distributions and the
From the above analysis, we have established grmula r = @ (1- @) . The estimation error is
relationship (model) between this quantity and therather small as the number of replications is large
underlying model parameters, ¢, ¢ and g: (1000), but not negligible. For example, for the
category (0.0004, 0.0007] different runs of the
G)=r=P@@+P(E)=w[(1-0) &+ (1-a) %  sjmulation would give probabilities varying in the
(1-05)] = Qo (1- ct) G- interval 0.39 to 0.45. Hence there is a knowledge-
_ o ~based probability of 44% that the chance of attleas
The aim of the analysis is now to establishgne fatality is in the interval (0.04%, 0.07%].
uncertainty distributions on the parameters and use

the event tree model to propagate these unceesinti  Taple 3. Knowledge-based probabilities, P, for r

to an uncertainty distribution for G(1). A numetica = G(1)
example will explain the ideas. :
Let us first consider g the expected number of Interval forr | Interval forr. | Simulated
releases. As an estimate of we used 0.005. To Reformulated probability
reflect uncertainties we use a subjective prolgbili mtgrvals (%) (x
distribution. This distribution may, for examples b 10%)
beta-distribution, a triangular distribution or a
uniform distribution. For this case we will simply <0.0002 < 0.02 0.00
assume that the analyst specifies a uniform | (0.0002, (0.02, 0.04] 0.12
distribution on the interval [0.003, 0.007], which 0.0004]
means that the analyst is confident that the true q | (0.0004, (0.04, 0.07] 0.44
lies in this interval, and that his/her degree elidf 0.0007]
that @ lies in the interval [0.003, 0.005] is the same | (0.0007, (0.07, 0.10] 0.28
as [0.005, 0.007] (50%). We make similar | 0.0010]

(0.0010, (0.10, 0.13] 0.13
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0.0013] decision maker -- the decision should not be risk-

(0.0013, (0.13, 0.16] 0.03 based [2].

0.0016] To compare the two approaches in Section 3, let us

> 0.0016 >0.16 0.00 firstly focus on the approach in Section 3.2, which
extends the probability of frequency approach.
Following this approach, the analysts are to exgpres

the epistemic uncertainties about the parameters of

distribution of = G(1) the probability models using subjective probalgti

0.5

0.45

04

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

In practice it is difficult to perform a complete

_ uncertainty analysis within this setting. In theany
uncertainty distribution on the total model and

parameter space should be established, which is

— impossible to do. So, in applications, only a few
marginal distributions on some selected parameters

are normally specified, and therefore the unceain

reflecting some aspects of the uncertainty. This

H distributions on the output probabilities are just
| -

makes it difficult to interpret the produced

uncertainties.

It is obviously a challenge in practice to estdbtise

Figure 3. Knowledge-based probabilities, P, for r = €pistemic distributions, as indicated in SectioB. 3.

G(1) based offable 3 However, more important is the conceptual issues.
Introducing the chances means two levels of
uncertainty, and one may question what is gained by

Uncertainty factors for the subjective probabititie this second level. The standard answer would ke tha

can be defined as in Section 3.1. we need to establish the probability models with th

The g-q; parameters reflect the vulnerabilities @ssociated parameters to be able to apply the
(robustness) of the system given a leakage. As waBayesian machinery for ensuring consistency in the
noted in Section 3.1, resilience is not relevant toProbability assignments and in the updating of
consider when specifically addressing the probabilities in the case that new information
consequences of leakages, but focus on resilience Pecomes available. For many types of applications,
of course important in order to be able to sustainSuch updating is important, in particular for risk
operation in case of any type of changes ora@Ssessments in an operational phase. However, for

disturbances in the process that could lead tdhe LNG case, such an updating is not considered

(0.0002, 0.0004]  (0.0004, 0.0007]  (0.0007, 0.00010] .0qQO, 0.00013] (0.0013, 0.00016]

leakages. essential, as the assessments are carried out at
particular points in time to support specific demis
4. Discussion at these points. The assessment process is nioe¢ of t

form typically implemented when using Bayes’
The actual risk assessments of the LNG plant wergormula. Our recommended approach in this case is,
based on best-estimates. The scientific basis was ntherefore, the former one. The assessment is g|mp|e
clarified. By reference to the calculated probéie#i, ~ and we have not been able to point to decisive
the operator concluded that the risk was acceptablgrguments for using the alternative and much more
and this was communicated to all other parties,comp|ex approach. This does not mean, however,
including the neighbours. Uncertainties were notthat chances cannot be introduced in a case like th
reported. In fact the term “uncertainty” was not The point made is that if such models and concepts
referred to at all in the main risk analyses report gre introduced, they need to be properly justified.
The basic conclusion was that the risk is very low
and the neighbours would acknowledge this if Both approaches studied in Section 3 are based on
informed by the experts used by the operator. Thighe use of subjective probabilities, and theseecéfl
approach cannot be justified, and the actual peocesthe uncertainties (degree of belief) of the assssso
has also been strongly criticized; see Vinnem [31]conditional on the background knowledge K. These
and Aven [6]. The two approaches presented inprobabilities may camouflage uncertainties, as was
Section 3 have a stronger scientific basis and theyiscussed in Section 2. The assigned probabiities
both acknowledge the need for seeing beyond th@onditioned on a number of assumptions and
probabilistic analysis. A risk assessment inforhes t - syppositions. Uncertainties are often hidden in the

background knowledge, and we may consequently
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question whether the assigned subjectiveuncertainty; see e.g. [25], [19], [24]. It obvibus
probabilities adequately describe the assessor'seeds to be addressed as the uncertainty assessment
uncertainties of the unknown quantities consideredare conditional on the use of this model. But how
As an example, think of the assumption made in theshould we deal with this “error” — should we
actual LNG study that in the event of impact of aquantify it?

passing vessel on an LNG tanker loading at the ,quay'No” is our clear answer [7]. It is not meaningtol

the gas release would be ignited immediately,quantify the model inaccuracy. The point we make is
presumably by sparks generated by the collisionthat if the model is not considered good enough for

itself. This assumption could be wrong. its purpose, it should be improved. The uncertainty
Uncertainties are not revealed by not addressin@ssessments are based on the model used. Of course,
uncertainties about this assumption. when observations of N (from similar plants) are

This issue is discussed by, for example, Mosleh &available, we would compare the assessments of N
Bier [23]. They refer to a subjective probability which are conditional on the use of the model, g,
P(A[X), which expresses the probability of the @éven with these observations. The result of such a
A, given a set of conditions X. As X is uncertéiin  comparison provides a basis for improving the model
is a random variable), a probability distributiaor f and accepting it for use. But at a certain stage we
the quantity h(X) = P(A|X) can be constructed. Thusaccept the model and apply it for comparing options
there is uncertainty about the random probability,and making judgments about, for example, risk
P(A|X). However, we will stress that the probapili acceptance (tolerability). Then it has no meanmg i
is not an unknown quantity (random variable) fag th quantifying the model inaccuracy. The results are
analyst. To make this clear, let us summarise theonditional on the model used. Instead of spedifyin
setting of subjective probabilities. A subjective P(N < y) directly, we compute P(g(X,A y |K) and
probability P(A|K) is conditional on the background g is a part of the background knowledge K.
knowledge K, and some aspects of this K can beAn important task for the scientific communities in
related to X, as described by Mosleh and Bier [23].different areas is to develop good models. The
The analyst has determined to assign his/hemodels are justified by reference to established
probability based on K. If he/she finds that the theories and laws explaining the phenomena studied,
uncertainty about X should be reflected, he/sheand the results of extensive testing. The perfoo@an
would adjust the assigned probability using the lawof a model must, however, always be seen in lifht o
of total probability. This does not mean howeveatth the purpose of the analysis. A crude model can be
P(A|K) is uncertain, as such a statement wouldpreferred instead of a more accurate model in some
presume that a true probability value exists. Thesituations if the model is simpler and it is abte t
assessor needs to clarify what is uncertain anddentify the essential features of the system
subject to the uncertainty assessment and whaberformance.

constitutes the background knowledge. From ain the literature, attempts have been made to
theoretical point of view, one may think that it is explicitly incorporate the model inaccuracies (an
possible (and desirable) to remove all such Xs fromexample is given in Aven (2003) taken from thediel
K, but in a practical risk assessment context ihat of structural reliability analysis (SRA)). The usé
impossible. We will always base our probabilities 0 g(X,Z) means a simplification, and the idea is then
some type of background knowledge, and often thidntroduce an error term, a (say), such that weiolata
knowledge would not be possible to specify usingnew model

quantities such as X.

Model inaccuracies (uncertainties) are not g(X,2)=ag(X,2) =a(5 X (1-9 Z» Zs

incorporated in the analysis in Section 3. We will

argue that the epistemic uncertainty analysis danno + 10(1- 4 Z, (1-Z3)).
and should not aim at quantifying the model
inaccuracies. Clearly, this may give a better model, a more

We use the model g(X,Z) of the number of fatalities accurate description of the world. However, it vebul
N in Section 3.1 as an illustrating example. Hefs g probably not be chosen in a practical case as jt ma

given by: complicate the assessments. It may be much more
difficult to specify a probability distribution for
g(X,2) =5 X (1- 3) Z, Zz + 10(1- 4) Z, (1-Z). (a,X,2) than for (X,Z). There might be lack of

relevant data to support the uncertainty analySes o
The model inaccuracy is defined by the differenceand there could be dependencies between a and
between the “true” N and the model output, i.e. N —(X,Z). We have to balance the need for accuracy and
g(X,Z). This difference is also referred to as mode simplicity.
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In the literature, various methods have beenoperational phase, it could, however, be decisive f

suggested to reflect model uncertainties (segfH,g. the choice of approach. Anyway, if chances are
[24], [14], [33]. Above we briefly looked into one introduced they need to be justified and meaningful
typical approach (the standard SRA approach). Adnterpretations provided.

another typical approach we refer to Apostolakijs [1

which addresses the issue of weighing differentAcknowledgements

models: Let M and M be two alternative models to
be used for assigning the probability, A. Condiéibn
on M, we have an assignment P(AIK
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