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1. Introduction 

A common perspective on risk is the so-called triplet 
definition based on Kaplan and Garrick [20]:   

 
Risk is equal to the triplet (si, pi, ci), where si 
is the ith scenario, pi is the probability of that 
scenario, and ci is the consequence of the ith 
scenario, i = 1,2, …N.   

 
For unique situations, the probabilities are 
interpreted as subjective probabilities whereas, if 
repeated similar situations can be generated, the 
probabilities pi have to be understood as relative 
frequency-interpreted probabilities (also referred to 
as chances). These probabilities are unknown, and 
subjective probabilities are used to express the 
(epistemic) uncertainties about the true value of the 
relative frequencies. The framework then established 
is referred to as the probability of frequency 
approach to risk assessment.     
Aven [4], [8] extends the framework by considering 
risk as the triplet (A,C,U), where A is the initiating 
events (e.g. a leakage), C the consequences of A, and 
U the associated uncertainties (will A occur, what 
will the consequences C be?).  Based on this risk 
concept, risk is described by (A,C,P,U,K) where P is 
a subjective probability and K is the background 
knowledge (including assumptions) that the 
assessments P and the uncertainties U are based on.   

In this paper we provide an example to show the 
main features of this risk perspective. These features 
also cover key concepts like vulnerability and 
resilience. Comparisons are made with the Kaplan 
and Garrick [20] perspective.  Before we introduce 
the case, we outline the main pillars of the (A,C,U) 
risk perspective.  
 
2. The (A,C,U) risk perspective  

We define risk by two-dimensional combination of 
[4], [8] 
 
i) events A and the consequences of these 

events C, and 
ii)  the associated uncertainties U (will A occur 

and what value will C take?).          (I) 
 
We refer to this as the (A,C,U) perspective, as 
already mentioned. We may rephrase this definition 
by saying that risk associated with an activity is to be 
understood as [9]: 
 
Uncertainty about and severity of the consequences 
of an activity    (I’).  
 
Here severity refers to intensity, size, extension, 
scope and other potential measures of magnitude, 
and is with respect to something that humans value 
(lives, the environment, money, etc.). Losses and 
gains, for example expressed by money or the 
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number of fatalities, are ways of defining the severity 
of the consequences. The uncertainties relate to the 
events and consequences; the severity is just a way 
of characterising the consequences [9].  
To describe the uncertainties, we use subjective 
(knowledge-based) probabilities. If the probability 
equals 0.1 (say), this means that the assessor 
compares his/her uncertainty (degree of belief) about 
the occurrence of the event with the standard of 
drawing at random a specific ball from an urn that 
contains 10 balls [21]- [22]. A risk description based 
on this perspective includes the following elements: 
(A,C,U,P,K), that is, risk is described by events and 
consequences, associated uncertainties (whether A 
will occur and what value C will take), knowledge-
based probabilities P, and K the background 
knowledge that U and P are based on. The 
probability assignments are based on hard data, 
expert judgments and models.  
This perspective acknowledges that risk extends 
beyond probabilities. Probability is just a tool used to 
express the uncertainties but is not a “perfect” tool. 
By restricting risk to the probability assignments 
alone, aspects of uncertainty and risk are “hidden”: 
there could be a lack of understanding about the 
underlying phenomena, and assumptions can be 
made bounding the space of possible events and 
scenarios, but the probability assignments alone are 
not able to fully describe this status. To explain this 
in more detail, consider the following two examples:  
Consider the risk, seen through the eyes of a risk 
analyst in the 1970s, related to future health 
problems for divers working on offshore petroleum 
projects. An assignment is to be made for the 
probability that a diver would experience health 
problems (properly defined) during the coming 30 
years due to the diving activities. Let us assume that 
an assignment of 1% is made.  This number is based 
on the available knowledge at that time. There are no 
strong indications that the divers will experience 
health problems. However, we know today that these 
probabilities led to poor predictions. Many divers 
have experienced severe health problems [10], p. 7. 
By restricting risk to the probability assignments 
alone, we see that aspects of uncertainty and risk are 
hidden.  There is a lack of understanding about the 
underlying phenomena, but the probability 
assignments alone are not able to fully describe this 
status.  
As a second example, consider an offshore petroleum 
installation where the operations management is 
concerned about the deterioration of some critical 
equipment. The maintenance discipline ensures that 
the deterioration will not cause safety problems. It 
refers to a special maintenance programme that will 
be implemented, which will cope with the 

deterioration problem.  So what is the risk associated 
with hydrocarbon leakages caused by operational 
problems? Given the background information of the 
maintenance discipline, a 10% leakage probability 
(for a defined leakage size) is assigned.  This number 
is based on relevant historical data, and does not in 
any respect reflect the concern of the operation’s 
management.  The assignment assumes that the 
maintenance programme will be effective.  But 
surprises could occur. Production of oil over time 
leads to changes in operating conditions, such as 
increased production of water, H2S and CO2 content, 
scaling, bacteria growth, emulsions, etc.: problems 
that to a large extent need to be solved by the 
addition of chemicals. These are all factors causing 
increased likelihood of corrosion, material brittleness 
and other conditions that may cause leakages. By the 
assignment of 10%, we hide an important element of 
uncertainty. In a risk analysis a number of such 
probability assignments are performed, and the 
hidden uncertainties could create surprising 
outcomes somewhere. You do not know where they 
will come, but they definitely could happen.   
The risk description (A,C,U,P,K) covers probability 
distributions of A and C, as well as predictions of A 
and C, for example a predictor C*, given by the 
expected value of C, unconditionally or conditional 
on the occurrence of A, i.e. C* = EC or C* = E[C|A].   
Stochastic models (with parameters) expressing 
aleatory uncertainty, i.e. variation in populations of 
similar units, are used to ease the probability 
assignment. Probability models constitute the basis 
for statistical analysis, and are considered essential 
for assessing the uncertainties and drawing useful 
insights [17], [32].  The probability models 
coherently and mechanically facilitate the updating 
of probabilities in line with the Bayesian paradigm. 
However, such models need to be justified, and if 
introduced they are to be considered as tools for 
assessing the uncertainties about A and C.  The 
estimation of the parameters of the models is not the 
end product of the analysis as in a traditional risk 
analysis [8].  
The knowledge-based (subjective) probabilities 
express epistemic uncertainties, the assessor’s (lack 
of) knowledge about an event or an unknown 
quantity.  The stochastic models represent variation 
in the populations of similar units to the one (those) 
studied. To formalise the concept of “similar”, we 
need to introduce the term “exchangeability”, but for 
the purpose of the present paper it is sufficient to 
think of the situations as similar.  Loosely speaking, 
a chance, which we denote Pf, is the Bayesian term 
for a frequentist probability (cf. the representation 
theorem of de Finetti [13]; see Bernardo and Smith 
[12], p. 172. The frequentist probability used in a 
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traditional statistical setting also represents a 
“success fraction” of an infinite population.  Think of 
the throw of a drawing pin. The frequentist 
probability that the pin is up is understood as the 
fraction of throws showing pin up if the experiment 
could be repeated infinitely under similar conditions. 
In theory these concepts, the chance and the 
frequentist probability, are not the same, but from a 
practical point of view it is difficult to see much 
difference [3].    
Chances (frequentist probabilities) Pf are in fact not 
measures of uncertainty. They do not represent the 
analyst’s uncertainties. They are unknown quantities 
and need to be treated as such in the risk assessment. 
Bayesian analysis is a common tool used for this 
treatment. The idea is to firstly establish adequate 
probabilistic models representing the aleatory 
uncertainties, then to assess epistemic uncertainties 
about unknown parameters of these models by 
assigning prior distributions,  next to use Bayes’ 
formula to update the uncertainties in light of new 
data to obtain the posterior distributions, and finally 
to obtain the predictive distribution of the quantities 
of interest, i.e. A and C (this predictive distribution is 
epistemic, but it also reflects the aleatory 
uncertainties).  
A risk assessment is a methodology designed to 
determine the nature and extent of risk, i.e. assess the 
risk (A,C,U). It comprises the following main steps:  

 
1. Identification of hazards/threats/ 

opportunities (sources)   
2. Cause and consequence analysis, 

including analysis of vulnerabilities  
3. Risk description, using probabilities 

and expected values  
4. Risk evaluations, i.e. comparisons 

with possible risk tolerability 
(acceptance criteria)   

 
Risk management comprises all co-ordinated 
activities to direct and control an organization with 
regard to risk, i.e. manage risk. Two main purposes 
of the risk management are to ensure that adequate 
measures are taken to protect people, the 
environment and assets from undesirable 
consequences of the activities being undertaken, and 
to balance different concerns, for example safety and 
costs. Risk management covers both measures to 
avoid the occurrence of hazards/threats, and 
measures to reduce their potential consequences. 
 
Next we introduce the concepts “vulnerability” and 
“resilience” [5], [29]:  
 

Vulnerability (antonym robustness) = (C, U| A), in 
other words, the vulnerability is the two-dimensional 
combination of consequences C and associated 
uncertainties U, given the occurrence of an initiating 
event A.  For example, the vulnerability of a person 
with respect to a certain virus is the potential 
consequences of this virus and associated 
uncertainties (what will the consequences be?).  The 
definition of vulnerability follows the same logic as 
that of risk. The uncertainty of various consequences 
can be described by means of probabilities, for 
example for the probability that the person will die 
from the virus attack. A description of vulnerability 
thus covers the following elements:   
 
(C, U, P, K | A)  
 
i.e. the possible consequences C, uncertainty U, 
probability P, and the background knowledge K,  
given that the initiating event A takes place.  In line 
with Aven and Renn [9], we may interpret 
vulnerability in relation to the event, A, as 
uncertainty about and severity of the consequences 
of an activity given the occurrence of A.  
When we say that a system is vulnerable, we mean 
that the vulnerability is considered high.  The point is 
that we assess the combination of consequences and 
uncertainty to be high should the initiating event A 
occur.  If we know that the person is already in a 
weakened state of health prior to the virus attack, we 
can say that the vulnerability is high.  There is a high 
probability that the patient will die. 
Vulnerability is an aspect of risk.  Because of this, 
the vulnerability analysis is a part of the risk 
analysis.  If vulnerability is highlighted in the 
analysis, we often talk about risk and vulnerability 
analyses. 
Resilience is closely related to the concept of 
robustness.  The key difference is the initiating event 
A. Robustness and vulnerability relate to the 
consequences and uncertainties given a fixed A, 
whereas resilience is open for any type of A, also 
surprising events. We may get ill due to different 
types of virus attacks; also new types of viruses may 
be created. From this idea we define resilience as  
 
Resilience:   (C,U|any A,  including new types of A)  
 
and the resilience description:  
 
(C,U,P,K | any A,  including new types of A).   
 
Hence the resilience is considered high if the person 
has a low probability of dying due to any type of 
virus attack, also including new types of viruses. 
Resilience is about the consequences in the case of 
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any “attack” (virus attack) and associated 
uncertainties.  We say that the system is resilient if 
the resilience is considered high. Of course, in 
practice we always have to define some boundaries 
for which A’s to include.  
For all these definitions, the consequences C depend 
on the performance of barriers (denoted B) [15], and 
to explicitly show this we write C = (B,C),  resulting 
in a  resilience description (B,C,U,P,K| any A,  
including new types of A).   
The performance of the barrier can be expressed 
through the capacity of the barrier (and associated 
uncertainty, probability), for example the strength of 
a wall.  The barriers and the system performance in 
general are influenced by a number of performance 
influencing factors (PIFs), for example resources, 
level of competence, management attitude, etc.   
Analogous to risk assessment and risk management, 
we define vulnerability assessment, vulnerability 
management, resilience assessment and resilience 
management (engineering), for example:    
 
Resilience engineering (management) comprises all 
measures and activities carried out to manage 
resilience (normally increase resilience).  
 
These measures and activities are based on the PIFs. 
For example, we may add resources or increase the 
competence to obtain a higher level of resilience.  
We may exercise and avoid smoking to increase the 
resilience in case of an illness.  
The above definition of resilience is in line with the 
one given by Hollnagel [18]: the intrinsic ability of a 
system to adjust its functioning prior to or following 
changes and disturbances, so that it can sustain 
operations even after a major mishap or in the 
presence of continuous stress.  

A risk analysis following the (A,C,U) perspective 
describes risk by (A,C,U,P,K), as explained above. 
To ensure that the risk analysis includes the 
vulnerability and resilience dimensions, we may add 
that the risk assessment should also highlight the 
descriptions  

(C,U,P,K|A) and (C,U,P,K | any A, including new 
types of A).   
 
3. Application. An LNG (Liquefied Natural Gas) 
plant in an urban area 

This case study concerns the risk related to a new 
LNG plant to be located on the west coast of 
Norway, in an urban area (Tananger) outside the 
city of Stavanger, about 4 km from the Stavanger 
Airport. Despite the formal approval according to 
the SEVESO II Directive, there is considerable 

resistance against the plant from the neighbours 
living less than one kilometre from the plant. The 
LNG plant is located only a few hundred metres 
from a ferry terminal and this also creates 
concern.  
The LNG plant is now under construction by the 
energy supplier Lyse. The necessary approval 
from local and central authorities has been 
obtained.  The plan is that natural gas from the 
North Sea is transported through pipelines to 
shore, and then liquefied at the plant before it is 
stored in a huge tank. The LNG is then distributed 
from the plant to local consumers by LNG tankers 
and LNG lorries [30].  The annual production is 
300,000 tons of LNG per year, but the capacity 
may be increased to 600,000 tons if market 
conditions allow such an increase. The LNG plant 
has the following main components [31]: Pipeline 
landfall, Gas reception facilities, Pre treatment, 
LNG production, LNG tank and Export facilities.  
In the following we will look at two potential 
ways of conducting the risk assessments for this 
plant, in line with the risk perspective described in 
the previous section. Some comments on how the 
assessments were in fact carried out in real life are 
given throughout the discussion.      

 
3.1 An analysis approach with no chances 
introduced  

The risk assessment will be based on uncertainty 
assessments of the “observables” A and C, so we 
first have to identify these.  In the study two 
interesting observables are:   

 
N: the number of fatalities (3rd parties) 
D: the occurrence of an accident leading to a 
fatality of person z (arbitrarily chosen). 
 

The aim of the risk assessment is to predict these 
quantities and to describe uncertainties. In this case 
the predictions would be straightforward: there 
would be no fatalities and the event D would not 
occur. However, there are uncertainties, and 
accidents could occur, leading to deaths. To describe 
these uncertainties we use event tree models and 
subjective probabilities. We may introduce chances 
(relative frequencies), as in Section 3.2, but let us 
first assume that the analysts decide not to do so. 
They find that    
 
• it is difficult to give meaningful interpretations 

of the chances.  
• the introduction of the chances makes the 

analysis more complex, and no added value is 
identified.  
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In the following we restrict attention to N. To ease 
the assignment of knowledge-based (subjective) 
probabilities of N, we introduce a model g, an event 
tree model; see Figure 1. Here  
 
X =  number of releases (which is approximately 
equal to 1 if a release occurs and 0 otherwise as we 
ignore the probability of two releases in the period 
studied) 
Z1 =  I(A)   (I is the indicator function which is equal 
to 1 if the argument is true and 0 otherwise)  
Z2 =  I(B)  
Z3 =  I(pool fire).   
Z = (Z1, Z2, Z3) 
 
We see that if a release occurs, it can either result in 
a pool fire, an explosion or no effect, depending on 
the results of the branching events, immediate 
ignition, and delayed ignition.  
The model provides four scenarios:  
 
s1: release - A - pool fire   
s2: release - not A – B - flash (pool) fire   
s3: release - not A – B - explosion  
s4: release - not A - not B - no effect.  
 
Assume that the number of people exposed to 
scenario, si  is vi, where v1 = 0,  v2 = 50 and v3 = 100. 
Furthermore, assume that the fraction of fatalities is 
di, where d2 = d3= 0.1.  
The model expresses that  

 
N = g(X,Z)  = 5 X (1- Z1) Z2 Z3 + 10(1- Z1) Z2 
(1-Z3),  
 

as the number of fatalities is 5 in case of scenario 2, 
and this scenario occurs if (1- Z1) Z2 Z3 = 1, and the 
number of fatalities is 10 in case of scenario 3, and 
this scenario occurs if (1- Z1) Z2 (1-Z3) = 1.  

 

X =# releases 

Immediate 
ignition A

Not 
immediate 
ignition 

pool fire  

Z3 = 1     pool fire Delayed ignition B

Z2 = 1 

No ignition 

Explosion  

No effect 

Z1 = 1 

 
 
Figure 1. Event tree for the LNG plant case  

The quantities, X and Z, are unknown and 
knowledge-based (subjective) probabilities are used 
to express the uncertainties (degree of belief). 
Suppose the following assignments have been made 
given the background knowledge K of the analysts:  

 
P(X= 1) = EX = 0.005 
P(Z1 = 1) =  P(A) = 0.3   
P(Z2 =1| Z1 = 0) =  P(B| not A) = 0.2  
P(Z3 =1| Z1 = 0, Z2 = 1) =  P(pool fire | not A,B) 
= 0.4.   

 
To interpret these numbers, consider for example, 
P(Z1 = 1). We have  P(Z1 = 1) =  P(A|K) = 0.3, which 
means that the analysts consider the uncertainty of 
immediate ignition occurring (given a release) to be 
the same as drawing a red ball out of an urn which 
comprises ten balls of which three are red.  
The Z probabilities are all reflecting the 
vulnerabilities (robustness) of the system given a 
leakage. Resilience is not relevant to consider when 
specifically addressing the consequences of leakages.  
However, focus on resilience is of course important 
in order to be able to sustain operation in case of any 
type of changes or disturbances in the process that 
could lead to leakages. The probability of a leakage 
is strongly dependent on the resilience management.      
 
To compute the distribution of N given this input, we 
can follow the rules of probability as in the previous 
section. The results are shown in Table 1.  
 
Table 1. Probability (subjective) distribution for the 
number of fatalities associated with the event tree of 

Figure 1 
 
N: number of 
fatalities 
associated with 
release as 
defined by the  
event tree in 
Figure 1 

Probability P  E  contribution  
(E: Expected 
value) 

0 0.99930 0 
5 0.00028 0.0014 
10 0.00042 0.0042 
 
The probabilities assigned are based on 
background knowledge K, which includes a 
number of assumptions. Here are some few 
examples, evident from the above analysis: 

 
• The event tree model  
• A certain number of exposed people  
• A fraction of fatalities in different 

scenarios 
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Examples of other assumptions made are:    
 
• All vessels and piping are protected by the 

water application like monitors, hydrants. 
• Release rates are constant throughout the 

release duration time.  
 

The understanding of the physical phenomena and 
the computer codes used also strongly affect the 
results.   
Vinnem [31] illustrates the dependencies of the 
assumptions made by pointing out that the 
frequency of accidents with at least 100 fatalities 
increased by a factor of 56 when compared to the 
results from the initial risk assessment performed 
for the operator of the plant. The initial 
assessment was performed before engineering 
studies had started, whereas the updated study 
made by the engineering contractor reflected all 
the engineering details. Nonetheless, the example 
clearly shows the large difference in background 
knowledge.  
Vinnem [31] also points to the assumption made 
in the actual analysis of the plant that, in the event 
of impact of a passing vessel on an LNG tanker 
loading at the quay, the gas release would be 
ignited immediately, presumably by sparks 
generated by the collision itself. However, 
according to Vinnem [31], no explanation was 
provided of how such ignition of a very heavy and 
cold gas could occur physically. He concludes that 
it is very hard to foresee how it could be caused in 
this way. The implications of the assumption are 
important for the further analysis [31]:   
 

However, the implication of this 
assumption was that it was unnecessary to 
consider in the studies any spreading of 
the gas cloud due to wind and heating of 
the liquefied gas, with obvious 
consequences for the scenarios the public 
might be exposed to. Such a very critical 
assumption should at least have been 
subjected to a sensitivity study in order to 
illustrate how changes in the assumption 
would affect the results, and the 
robustness of the assumption discussed. 
None of this, however, has been provided 
in any of the studies.   

 
3.2 An alternative analysis approach based on 
chances 

Now let us assume that the analysts choose to 
introduce chances:   
 

p =  individual risk for a specific person in the 
group having the highest risk, i.e. the probability 
that a specific person (arbitrarily chosen) shall be 
killed due to the activity during a period of one 
year  
 
and the f-n curve, G(n), expressing the frequency   
(i.e. the expected  number) f of accidents that lead 
to minimum n number of fatalities, which can also 
be interpreted as the chance (frequentist) 
probability of an accident with at least n fatalities, 
i.e.   
 
G(n) = Ef[ Y(n)],  
 
where Y(n) denotes the number of accidents with 
at least n fatalities during a period of one year.   
These parameters (p and G(n)) are unknown and 
need to be estimated and uncertainties assessed. 
We start by addressing the problem of assessing 
the uncertainties about the true value of these 
parameters. The tool for this purpose is 
knowledge-based (subjective) probabilities.  The 
approach is referred to as the probability of 
frequency approach, as was noted in Section 1.   
 
The analysis can be viewed as an application of 
the Bayesian framework, which comprises the 
following steps:  
 
1. Establish a probabilistic model 
2. Assign a prior distribution on the parameters of  

interest 
3. Use Bayes’ theorem to establish the posterior 

distribution of the parameters.  
 
To illustrate the analysis, we will use an event tree, 
as presented in Figure 2.  The following parameters 
are introduced:  
 
q0 =  Ef[X] 
q1 =  Pf(A)    
q2 =  Pf(B| not A) 
q3 =  Pf(pool fire| not A,B)  
 
For q1 and q2, it is tacitly assumed that the chances 
are conditional on the occurrence of a release.  To 
interpret the parameters we need to construct infinite 
populations of similar situations to the one studied. 
For example, q1 represents the fraction of times 
immediate ignition occurs in the case of a release if 
the  situation is repeated over and over again.  
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Figure 2. Event tree for the LNG plant case  
 

If we know all parameter values we can calculate the 
contributions to p and G(n), using standard 
probability calculus. However, all parameters are 
unknown and we use knowledge-based (subjective) 
probabilities to express the analysts’ uncertainties 
about the true value of these parameters. This 
analysis is normally carried out using a Monte Carlo 
simulation.  
Let us concentrate our focus on G(1), the relative 
frequency probability of at least one fatality;  to 
simplify the notation we refer to this  quantity as r.  
From the above analysis, we have established a 
relationship (model) between this quantity and the 
underlying model parameters  q0, q1, q2 and q3:  
 
G(1) = r = P(s1) + P(s2) = q0 [(1- q1) q2 q3 + (1- q1) q2 
(1-q3)] = q0 (1- q1) q2.  
 
The aim of the analysis is now to establish 
uncertainty distributions on the qi parameters and use 
the event tree model to propagate these uncertainties 
to an uncertainty distribution for G(1). A numerical 
example will explain the ideas.  
Let us first consider q0, the expected number of 
releases.  As an estimate of q0 we used 0.005. To 
reflect uncertainties we use a subjective probability 
distribution. This distribution may, for example, be a 
beta-distribution, a triangular distribution or a 
uniform distribution. For this case we will simply 
assume that the analyst specifies a uniform 
distribution on the interval [0.003, 0.007], which 
means that the analyst is confident that the true q0 
lies in this interval, and that his/her degree of belief 
that q0 lies in the interval [0.003, 0.005] is the same 
as [0.005, 0.007] (50%).  We make similar 

assumptions for the other parameters. See overview 
in Table 2.   
    

Table 2. Knowledge-based probabilities for the 
parameters q0, q1, q2 and q3 

 
Parameter  Distribution 

type  
Interval  

q0 Uniform  [0.003,0007] 
q1 Uniform [0.2,0.4] 
q2 Uniform [0.1,0.3] 
q3 Uniform [0.1,0.7]  
 

Using these distributions and assuming 
“independent” distributions for the qi parameters, we 
can calculate the knowledge-based distributions for r. 
Independence here means that if, for example, we 
know that q2  is equal to 0.12 (say),  this would not 
affect our uncertainty assessment of q3 (say).  
To establish the output distributions using analytical 
formulae is difficult. It is easier to use Monte Carlo 
simulation, and this is the common approach for 
performing this type of uncertainty assessment.  In 
this case the analysis is simply carried out using an 
Excel sheet. Random numbers for each parameter are 
drawn from the sheet (1000 replications) and using 
the formula r = q0 (1- q1) q2, we obtain the associated 
uncertainty distribution of r, shown in Table 3 and 
Figure 3. Note that these values are estimates of the 
probabilities given by the input of the Monte Carlo 
simulations: the uniform distributions and the 
formula r = q0 (1- q1) q2. The estimation error is 
rather small as the number of replications is large 
(1000), but not negligible. For example, for the 
category (0.0004, 0.0007] different runs of the 
simulation would give probabilities varying in the 
interval 0.39 to 0.45. Hence there is a knowledge-
based probability of 44% that the chance of at least 
one fatality is in the interval (0.04%, 0.07%].  
 

Table 3. Knowledge-based probabilities, P, for r 
= G(1) 

Interval for r  Interval for r. 
Reformulated 
intervals (% ) (x 
10-2) 
 

Simulated 
probability   

≤0.0002 ≤  0.02     0.00 
(0.0002, 
0.0004] 

(0.02, 0.04]     0.12 

(0.0004, 
0.0007] 

(0.04, 0.07]     0.44 

(0.0007, 
0.0010] 

(0.07, 0.10]     0.28 

(0.0010, (0.10, 0.13]     0.13 

X =# releases

Immediate
ignition A
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Figure 3.  Knowledge-based probabilities, P, for r = 
G(1) based on Table 3  

 
 

Uncertainty factors for the subjective probabilities 
can be defined as in Section 3.1.  
The q1-q3 parameters reflect the vulnerabilities 
(robustness) of the system given a leakage. As was 
noted in Section 3.1, resilience is not relevant to 
consider when specifically addressing the 
consequences of leakages, but focus on resilience is 
of course important in order to be able to sustain 
operation in case of any type of changes or 
disturbances in the process that could lead to 
leakages.  

 
4. Discussion   

The actual risk assessments of the LNG plant were 
based on best-estimates. The scientific basis was not 
clarified. By reference to the calculated probabilities, 
the operator concluded that the risk was acceptable 
and this was communicated to all other parties, 
including the neighbours. Uncertainties were not 
reported. In fact the term “uncertainty” was not 
referred to at all in the main risk analyses report.  
The basic conclusion was that the risk is very low 
and the neighbours would acknowledge this if 
informed by the experts used by the operator. This 
approach cannot be justified, and the actual process 
has also been strongly criticized; see Vinnem [31] 
and Aven [6]. The two approaches presented in 
Section 3 have a stronger scientific basis and they 
both acknowledge the need for seeing beyond the 
probabilistic analysis. A risk assessment informs the 

decision maker -- the decision should not be risk-
based [2].    
To compare the two approaches in Section 3, let us 
firstly focus on the approach in Section 3.2, which 
extends the probability of frequency approach. 
Following this approach, the analysts are to express 
the epistemic uncertainties about the parameters of 
the probability models using subjective probabilities.  
In practice it is difficult to perform a complete 
uncertainty analysis within this setting. In theory an 
uncertainty distribution on the total model and 
parameter space should be established, which is 
impossible to do. So, in applications, only a few 
marginal distributions on some selected parameters 
are normally specified, and therefore the uncertainty 
distributions on the output probabilities are just 
reflecting some aspects of the uncertainty. This 
makes it difficult to interpret the produced 
uncertainties.   
It is obviously a challenge in practice to establish the 
epistemic distributions, as indicated in Section 3.2. 
However, more important is the conceptual issues. 
Introducing the chances means two levels of 
uncertainty, and one may question what is gained by 
this second level. The standard answer would be that 
we need to establish the probability models with the 
associated parameters to be able to apply the 
Bayesian machinery for ensuring consistency in the 
probability assignments and in the updating of 
probabilities in the case that new information 
becomes available.  For many types of applications, 
such updating is important, in particular for risk 
assessments in an operational phase. However, for 
the LNG case, such an updating is not considered 
essential, as the assessments are carried out at 
particular points in time to support specific decisions 
at these points. The assessment process is not of the 
form typically implemented when using Bayes’ 
formula. Our recommended approach in this case is, 
therefore, the former one. The assessment is simpler 
and we have not been able to point to decisive 
arguments for using the alternative and much more 
complex approach. This does not mean, however, 
that chances cannot be introduced in a case like this. 
The point made is that if such models and concepts 
are introduced, they need to be properly justified.  
 
Both approaches studied in Section 3 are based on 
the use of subjective probabilities, and these reflect 
the uncertainties (degree of belief) of the assessors, 
conditional on the background knowledge K. These 
probabilities may camouflage uncertainties, as was 
discussed in Section 2. The assigned probabilities are 
conditioned on a number of assumptions and 
suppositions. Uncertainties are often hidden in the 
background knowledge, and we may consequently 
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question whether the assigned subjective 
probabilities adequately describe the assessor’s 
uncertainties of the unknown quantities considered. 
As an example, think of the assumption made in the 
actual LNG study that in the event of impact of a 
passing vessel on an LNG tanker loading at the quay, 
the gas release would be ignited immediately, 
presumably by sparks generated by the collision 
itself.  This assumption could be wrong. 
Uncertainties are not revealed by not addressing 
uncertainties about this assumption.    
This issue is discussed by, for example, Mosleh & 
Bier [23]. They refer to a subjective probability 
P(A|X), which expresses the probability of the event 
A, given a set of conditions X.  As X is uncertain (it 
is a random variable), a probability distribution for 
the quantity h(X) = P(A|X) can be constructed. Thus 
there is uncertainty about the random probability, 
P(A|X).  However, we will stress that the probability 
is not an unknown quantity (random variable) for the 
analyst. To make this clear, let us summarise the 
setting of subjective probabilities. A subjective 
probability P(A|K) is conditional on the background 
knowledge K, and some aspects of this K can be 
related to X, as described by Mosleh and Bier [23].  
The analyst has determined to assign his/her 
probability based on K. If he/she finds that the 
uncertainty about X should be reflected, he/she 
would adjust the assigned probability using the law 
of total probability. This does not mean however that 
P(A|K) is uncertain, as such a statement would 
presume that a true probability value exists. The 
assessor needs to clarify what is uncertain and 
subject to the uncertainty assessment and what 
constitutes the background knowledge. From a 
theoretical point of view, one may think that it is 
possible (and desirable) to remove all such Xs from 
K, but in a practical risk assessment context that is 
impossible. We will always base our probabilities on 
some type of background knowledge, and often this 
knowledge would not be possible to specify using 
quantities such as X.  
Model inaccuracies (uncertainties) are not 
incorporated in the analysis in Section 3. We will 
argue that the epistemic uncertainty analysis cannot 
and should not aim at quantifying the model 
inaccuracies.  
We use the model g(X,Z) of the number of fatalities 
N in Section 3.1 as an illustrating example. Here g is 
given by:    
 
   g(X,Z)  = 5 X (1- Z1) Z2 Z3 + 10(1- Z1) Z2 (1-Z3).  
 
The model inaccuracy is defined by the difference 
between the “true” N and the model output, i.e. N – 
g(X,Z). This difference is also referred to as model 

uncertainty; see e.g. [25], [19], [24].  It obviously 
needs to be addressed as the uncertainty assessments 
are conditional on the use of this model. But how 
should we deal with this “error” – should we 
quantify it?      
“No” is our clear answer [7]. It is not meaningful to 
quantify the model inaccuracy. The point we make is 
that if the model is not considered good enough for 
its purpose, it should be improved. The uncertainty 
assessments are based on the model used. Of course, 
when observations of N (from similar plants) are 
available, we would compare the assessments of N 
which are conditional on the use of the model, g, 
with these observations. The result of such a 
comparison provides a basis for improving the model 
and accepting it for use. But at a certain stage we 
accept the model and apply it for comparing options 
and making judgments about, for example, risk 
acceptance (tolerability). Then it has no meaning in 
quantifying the model inaccuracy. The results are 
conditional on the model used. Instead of specifying 
P(N ≤ y) directly, we compute P(g(X,Z) ≤ y |K) and 
g is a part of the background knowledge K.  
An important task for the scientific communities in 
different areas is to develop good models. The 
models are justified by reference to established 
theories and laws explaining the phenomena studied, 
and the results of extensive testing. The performance 
of a model must, however, always be seen in light of 
the purpose of the analysis. A crude model can be 
preferred instead of a more accurate model in some 
situations if the model is simpler and it is able to 
identify the essential features of the system 
performance.  
In the literature, attempts have been made to 
explicitly incorporate the model inaccuracies (an 
example is given in Aven (2003) taken from the field 
of structural reliability analysis (SRA)). The use of 
g(X,Z) means a simplification, and the idea is then to 
introduce an error term, a (say), such that we obtain a 
new model  
 
   g0(X,Z) = a g(X,Z)  = a(5 X (1- Z1) Z2 Z3  
 
                + 10(1- Z1) Z2 (1-Z3)).   

 
Clearly, this may give a better model, a more 
accurate description of the world. However, it would 
probably not be chosen in a practical case as it may 
complicate the assessments. It may be much more 
difficult to specify a probability distribution for 
(a,X,Z) than for (X,Z). There might be lack of 
relevant data to support the uncertainty analysis of a 
and there could be dependencies between a and 
(X,Z). We have to balance the need for accuracy and 
simplicity.  
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In the literature, various methods have been 
suggested to reflect model uncertainties (see e.g. [1], 
[24], [14], [33].  Above we briefly looked into one 
typical approach (the standard SRA approach). As 
another typical approach we refer to Apostolakis [1], 
which addresses the issue of weighing different 
models: Let M1 and M2 be two alternative models to 
be used for assigning the probability, A. Conditional 
on Mi, we have an assignment P(A|Ki). 
Unconditionally, this gives  
 
   P(A|K) =  P(A|K1) p1 + P(A|K2) p2,                   (4.1) 
 
where pi  is the analyst’s subjective probability that 
the ith model, i.e. the set of associated assumptions, 
is true (here p1 +  p2 =1). In a practical decision 
making context, the analysts would most likely 
present separate assignments for the different 
models, i.e. P(A|Ki), in addition to the weighed 
probability assignment (4.1). To specify the 
subjective probability P(A|K), the analysts may 
choose to apply the assignment procedure given by 
(4.1) also when pi cannot be interpreted as a 
probability that a specific assumption is true.  In such 
a case, pi must be interpreted as a weight reflecting 
the confidence in the model i for making accurate 
predictions.  
Hence, model uncertainty quantification in the sense 
of model weighing can be covered by the uncertainty 
assessment. Model weighing is a completely 
different issue from quantification of model 
inaccuracy. As stressed above, when using the 
framework to compute P(g(X,Z) ≤ y), we accept the 
use of  specific models and procedures for weighing 
the models.  The models and procedures are part of 
the background knowledge K. 
 
5. Conclusions    

In this paper we have presented and discussed a 
conceptual framework for risk assessment and risk 
management where risk is based on the triplet events, 
consequences and uncertainties. Compared to other 
approaches, this framework provides broader 
uncertainty assessments, by seeing beyond the 
knowledge-based (subjective) probabilities. An 
example of an analysis of an LNG (Liquefied Natural 
Gas) plant is used to demonstrate the applicability of 
the framework.  Two ways of approaching the LNG 
case are discussed: one where chances (frequentist 
probabilities) are introduced and one where such 
concepts are not introduced. The latter approach is 
simpler and is recommended. It does not allow for 
Bayesian updating procedures to be implemented, 
but this is not considered a problem in this particular 
case study. In other cases, especially in an 

operational phase, it could, however, be decisive for 
the choice of approach. Anyway, if chances are 
introduced they need to be justified and meaningful 
interpretations provided.   
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