PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of electromagnetic fields on the quality of onion (Allium cepa l.) seeds

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ pól elektromagnetycznych na jakość nasion cebuli (Allium cepa l.)
Języki publikacji
EN
Abstrakty
EN
The aim of this paper was to establish whether electromagnetic fields (EMF) with a super low frequency (SLF) have a negative effect on onion seed quality. Three sectors were separated on the device emitting electromagnetic fields: „E” – sector emitting electromagnetic radiation with the predominance of the electrical component, „EM” – sector emitting electromagnetic radiation without domination of its components and „M” – sector with a predominance of magnetic component. Seed germination and vigour were evaluated at 20 oC in darkness. Mycological analysis was performed using a agar plate method. Exposure of seeds to electromagnetic fields did not affect Gmax. Treated seeds were characterized with significantly lower germination capacity and higher percentage of deformed abnormal seedlings than untreated seeds. Electromagnetic radiation with the predominance of electrical component (E), and electromagnetic radiation with the predominance of magnetic component (M) also significantly decreased the germination energy. The effect of electromagnetic fields on the speed of germination was ambiguous. Seeds treated with the electromagnetic field with predominance of magnetic component (M), and electromagnetic field without domination of its components (EM) germinated significantly less uniformly than control. Generally, exposure of seeds to electromagnetic fields did not influence the incidence of fungi.
PL
Celem prowadzonych badań było ustalenie, czy pola elektromagnetyczne (EMF) o super niskiej częstotliwości (SLF) mają negatywny wpływ na jakość nasion cebuli. Na urządzeniu emitującym pola elektromagnetyczne wyodrębniono trzy sektory: „E” – sektor emitujący promieniowanie elektromagnetyczne z przewagą składowej elektrycznej, „EM” – sektor emitujący promieniowanie elektromagnetyczne bez dominacji jego składowych oraz „M” – sektor z przewagą składowej magnetycznej. Kiełkowanie i wigor nasion oceniono w temperaturze 20 oC w ciemności. Analizę mikologiczną przeprowadzono za pomocą testu agarowego. Poddanie nasion działaniu pól elektromagnetycznych nie wpłynęło na wartość Gmax. Traktowane nasiona charakteryzowały się znacznie niższą zdolnością kiełkowania i wyższym odsetkiem siewek anormalnych zniekształconych niż nasiona nietraktowane. Promieniowanie elektromagnetyczne z przewagą składowej elektrycznej (E) oraz promieniowanie elektromagnetyczne z przewagą składowej magnetycznej (M) istotnie zmniejszyło także energię kiełkowania. Wpływ pól elektromagnetycznych na szybkość kiełkowania był niejednoznaczny. Nasiona poddane działaniu pola elektromagnetycznego z przewagą składowej magnetycznej (M) i pola elektromagnetycznego bez dominacji jego składowych (EM) kiełkowały istotnie mniej wyrównanie niż nasiona nietraktowane. Zasadniczo, poddanie nasion działaniu pól elektromagnetycznych nie miało wpływu na występowanie na nich grzybów.
Rocznik
Strony
47--58
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Department of Entomology and Environmental Protection, Poznań University of Life Sciences
autor
  • Department of Phytopathology, Seed Science and Technology, Poznań University of Life Sciences
  • Department of Phytopathology, Seed Science and Technology, Poznań University of Life Sciences
  • Department of Phytopathology, Seed Science and Technology, Poznań University of Life Sciences
  • Department of Entomology and Environmental Protection, Poznań University of Life Sciences
  • ADR Technology
Bibliografia
  • [1] World Health Organization (WHO). Establishing a dialogue on risks from electromagnetic fields. Geneva; 2002. https://www.who.int/peh-emf/publications/en/EMF_Risk_ALL.pdf
  • [2] World Health Organization (WHO). Extremely low frequency fields. 2007. https://www.who.int/peh-emf/publications/Complet_DEC_2007.pdf?ua=1
  • [3] Draper G, Vincent T, Kroll ME, Swanson J. Childhood cancer in relation to distance from high voltage power lines in England and Wales: a case-control study. BMJ. 2005;330:1290. DOI: 10.1136/bmj.330.7503.1290
  • [4] Blackman CF. Can EMF Exposure During Development Leave an Imprint Later in Life? Electromagn Biol Med. 2006;25:217-25. DOI: 10.1080/15368370601034086
  • [5] Hardell L, Sage C. Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother. 2008;62:104-9. DOI: 10.1016/j.biopha.2007.12.004
  • [6] Johansson O. Disturbance of the immune system by electromagnetic fields – A potentially underlying cause for cellular damage and tissue repair reduction which could lead to disease and impairment. Pathophysiology. 2009;16:157-77. DOI: 10.1016/j.pathophys.2009.03.004
  • [7] Phillips JL, Singh NP, Lai H. Electromagnetic fields and DNA damage. Pathophysiology. 2009;16:79-88. DOI: 10.1016/j.pathophys.2008.11.005
  • [8] Ruediger HW. Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology. 2009;16:89-102. DOI: 10.1016/j.pathophys.2008.11.004
  • [9] Milham S. Historical evidence that electrification caused the 20th century epidemic of “diseases of civilization.” Med Hypotheses. 2010;74:337-45. DOI: 10.1016/j.mehy.2009.08.032
  • [10] Lai H, Singh NP. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect. 2004;112: 687. DOI: 10.1289/EHP.6355
  • [11] Wahab MA, Podd JV, Rapley BI, Rowland RE. Elevated sister chromatid exchange frequencies in dividing human peripheral blood lymphocytes exposed to 50 Hz magnetic fields. Bioelectromagnetics. 2007;28:281-88. DOI: 10.1002/bem.20289
  • [12] Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D’Ascenzo M, et al. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta – Mol Cell Res. 2005;1743:120-9. DOI: 10.1016/j.bbamcr.2004.09.005
  • [13] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, Part 1: static and extremely low-frequency (SLF) electric and magnetic fields. IARC Monogr Eval Carcinog risks to humans. 2002;80:1-395. ISBN 92 832 1280 0
  • [14] World Health Organization (WHO). 2017. Electromagnetic fields and public health: mobile phones. http://www.who.int/mediacentre/factsheets/fs193/en/
  • [15] Ahlbom A, Day N, Feychting M, Roman E, Skinner J, Dockerty J, et al. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer. 2000;83:692-8. DOI: 10.1054/bjoc.2000.1376
  • [16] Greenland S, Sheppard AR, Kaune WT, Poole C, Kelsh MA. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood Leukemia-EMF Study Group. Epidemiology. 2000;11:624-34. https://journals.lww.com/epidem/toc/2000/11000
  • [17] Foliart DE, Pollock BH, Mezei G, Iriye R, Silva JM, Ebi KL, et al. Magnetic field exposure and long-term survival among children with leukaemia. Br J Cancer. 2006;94:161-4. DOI: 10.1038/sj.bjc.6602916
  • [18] Fedrowitz M, Westermann J, Löscher W. Magnetic field exposure increases cell proliferation but does not affect melatonin levels in the mammary gland of female Sprague Dawley rats. Cancer Res. 2002;62:1356-63. https://cancerres.aacrjournals.org/content/canres/62/5/1356.full.pdf
  • [19] Kumlin T, Heikkinen P, Kosma V-M, Alhonen L, Jänne J, Juutilainen J. p53-independent apoptosis in UV-irradiated mouse skin: possible inhibition by 50 Hz magnetic fields. Radiat Environ Biophys. 2002;41:155-158. DOI: 10.1007/s00411-002-0153-8
  • [20] Viel J-F, Cardis E, Moissonnier M, de Seze R, Hours M. Radiofrequency exposure in the French general population: Band, time, location and activity variability. Environ Int. 2009;35:1150-4. DOI: 10.1016/j.envint.2009.07.007
  • [21] Li D-K, Yan B, Li Z, Gao E, Miao M, Gong D, et al. Exposure to magnetic fields and the risk of poor sperm quality. Reprod Toxicol. 2010;29:86–92. DOI: 10.1016/j.reprotox.2009.09.004
  • [22] Avendaño C, Mata A, Sanchez Sarmiento CA, Doncel GF. Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertil Steril. 2012;97:39-45.e2. DOI:10.1016/j.fertnstert.2011.10.012
  • [23] Kesari KK, Kumar S, Nirala J, Siddiqui MH, Behari J. Biophysical Evaluation of Radiofrequency Electromagnetic Field Effects on Male Reproductive Pattern. Cell Biochem Biophys. 2013;65:85-96. DOI: 10.1007/s12013-012-9414-6
  • [24] Nazýroðlu M, Yüksel M, Köse SA, Özkaya MO. Recent Reports of Wi-Fi and Mobile Phone-Induced Radiation on Oxidative Stress and Reproductive Signaling Pathways in Females and Males. J Membr Biol. 2013;246:869-75. DOI: 10.1007/s00232-013-9597-9
  • [25] McGill JJ, Agarwal A. The Impact of Cell Phone, Laptop Computer, and Microwave Oven Usage on Male Fertility. Male Infertility. New York, NY: Springer New York; 2014. p. 161-77. DOI: 10.1007/978-1-4939-1040-3_11
  • [26] International Rules for Seed Testing. Chapter 5: The germination test 2019;1:5-56. DOI: 10.15258/istarules.2019.05
  • [27] Joosen RVL, Kodde J, Willems L, Ligterink W, Plas LHW van der, Hilhorst HWM Germinator: A software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. Plant J. 2010;62:148-59. DOI: 10.1111/j.1365-313X.2009.04116.x
  • [28] Malone JP, Muskett AE. Seed borne-fungi. Description of 77 fungus species. Proc Int Seed Test Ass.1964;29(2):179-384. https://pdfslide.net/documents/jp-malone-ae-muskett-seed-borne-fungi-descriptions-of-77-fungus-.html
  • [29] Watanabe T. Pictorial atlas of soil and seed fungi morphologies of cultured fungi and key to species. Boca Raton, London, New York, Washington; CRC PRESS; 2002. ISBN: 0-8493-1118-7
  • [30] Mathur SB, Kongsdal O. Common laboratory seed health testing methods for detecting fungi. Basserdorf, Switzerland: Int Seed Testing Assoc; 2003. ISBN: 3-906549-35-6.
  • [31] Grabowska K, Detyna J, Bujak H. Influence of alternating magnetic field on selected plant properties. In: Szrek J, editor. Interdyscyplinarność badań naukowych (Interdisciplinarity of scientific research). Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej; 2014; 165-70. ISBN 987-83-7493-863-1. https://www.researchgate.net/publication/273633488
  • [32] Dorna H, Górski R, Szopińska D, Tylkowska K, Jurga J, Wosiński S, Tomczak M. Effects of a permanent magnetic field together with the shielding of an alternating electric field on carrot seed vigour and germination. Ecol Chem Eng S. 2010;17(1):53-61. https://drive.google.com/file/d/1IfsFlFVf3-2vO1OlkNuu09220UjUAwWs/view
  • [33] Balakhnina T, Bulak P, Nosalewicz M, Pietruszewski S, W3odarczyk T. The influence of wheat Triticum aestivum L. seed pre-sowing treatment with magnetic fields on germination, seedling growth, and antioxidant potential under optimal soil watering and flooding. Acta Physiol Plant. 2015;37:59. DOI: 10.1007/s11738-015-1802-2
  • [34] Das R, Bhattacharya R. Impact of electromagnetic field on seed germination. Proc XXVIIIth URSI General Assembly, New Delhi, India, October 2005. ISBN Proceedings 81-7764-928-0, Paper KP.14(0983). www.ursi.org/proceedings/procGA05/pdf/KP.14(0983).pdf
  • [35] Shabrangi A, Majd A, Sheidai M. Effects of extremely low frequency electromagnetic fields on growth, cytogenetic, protein content and antioxidant system of Zea mays L. Afr J Biotechnol. 2011;10(46):9362-9. DOI: 10.5897/AJB11.097
  • [36] Gemici M, Demiray H, Gemici Y. Effects of electromagnetic fields produced by high voltage transmission on physiology of Juglans regia L. and Cerasus avium L. Moensch. Ege. Üniv. Ziraat Fak. Derg. 2013;50(2):129-135. https://dergipark.org.tr/download/article-file/59435
  • [37] Biketi S, Kirui MSK, Mwonga S, Ngumbu R., Rono J. Effect of 50Hz magnetic field on the chlorophyll content of Spinacia oleracea. The 11th JKUAT Scientific, Technol Industrialization Conf. 2016;52. http://journals.jkuat.ac.ke/index.php/jscp/article/view/1328/1094
  • [38] Hasan GT, Ali KJ, Ahmad MA, Investigation the influence of magnetic field emitted by high voltage transmission lines on plant growth. Eur J. Sci Res. 2011;56(2):272-8. https://www.researchgate.net/publication/289882505_Investigation_the_influence_of_magnetic_field_emitted_by_high_voltage_transmission_lines_on_plant_growth
  • [39] Vataua D, Frigura Iliasa FM, Renghea S, Oros C. (2015): A Didactic Method for Assessing the Influence of the Electromagnetic Field on the Environment. Procedia – Social and Behavioral Sci. 2015;(191):50-5. https://www.sciencedirect.com/science/article/pii/S1877042815029043
  • [40] Dannehl D. Effects of electricity on plant responses. Sci Hortic. 2018;234:382-92. https://doi.org/10.1016/j.scienta.2018.02.007
  • [41] Pietruszewski S, Kania K. Effect of magnetic field on germination and yield of wheat. Int Agrophys. 2010;24:297-302. http://www.old.international-agrophysics.org/artykuly/international_agrophysics/IntAgr_2010_24_3_297.pdf
  • [42] Rochalska M, Grabowska-Topczewska K, Mackiewicz A. Influence of low magnetic field on improvement of seed quality. Int Agrophys. 2011;25(3):265-9. http://www.international-agrophysics.org/Influence-of-alternating-low-frequency-magnetic-field-on-improve,106320,0,2.html
  • [43] Jedlička J, Paulen O, Ailer Š. Research of effect of low frequency magnetic field on germination, growth and fruiting of field tomatoes. Acta Horticulturae et Regiotecturae. 2015;1:1-4. DOI: 1515/ahr-2015-0001
  • [44] Zardzewiały M, Zaguła G, Puchalski C. Effects of pre-sowing magnetic stimulation on the growth, development and changes in physicochemical properties in sugar beet seedlings. Teka Commission Motorization Power Industry in Agriculture. 2014;14(4):201-10. http://www.czasopisma.pan.pl/dlibra/publication/106981/edition/92676/content/effects-of-pre-sowing-magnetic-stimulation-on-the-growth-develop-in-physicochemical-properties-in-sugar-beet-milosz-zagula-grzegorz-puchalski-czeslaw
  • [45] Buchachenko AL., Kuznetsov DA, Berdinsky VL. New mechanisms of biological effects of electromagnetic fields. Biophysics. 2006;51(3):489-496. DOI: 10.1134/S0006350906030249
  • [46] Hołubowicz R, Xia X, Rosińska A, Kubisz L, Gauza M, Hojan-Jezierska D. Use of magnetic field (MF) and magnetized water (MW) to improve quality of seeds – a review article. In: Kubisz L, D Hojan-Jezierska, T Matthews-Brzozowska, A Marcinkowska-Gapiñska (eds.). Biofizyka a medycyna. Wydawnictwo Naukowe Uniwersytetu Medycznego im. Karola Marcikowskiego w Poznaniu, Poznań 2019;189-203. ISBN 978-83-7597-392-1
  • [47] Podleœna A, Bojarszczuk J, Podleœny J. Effect of pre-sowing magnetic field treatment on some biochemical and physiological processes in faba bean (Vicia faba L. spp. Minor). J Plant Growth Regul. 2019; DOI: 10.1007/s00344-019-09920-1
  • [48] Grzesik M, Górnik K, Janas R, Lewandowski M, Romanowska-Duda Z, van Duijn B. High efficiency stratification of apple cultivar Ligol seed dormancy by phytohormones, heat shock and pulsed radio frequency. J Plant Physiol. 2017;219:81-90. DOI: 10.1016/j.jplph.2017.09.007.
  • [49] Pietruszewski S, Muszyński S, Dziwulska A. Electromagnetic Fields and electromagnetic radiation as non-invasive external stimulants for seeds (selected methods and responses). Int Agrophys. 2007;21:95-100. http://www.international-agrophysics.org/Electromagnetic-fields-and-electromagnetic-radiation-as-non-invasive-external-stimulants,106532,0,2.html
  • [50] Kornarzyński K, Pietruszewski S. Wpływ dużych dawek zmiennego pola magnetycznego na kiełkowanie nasion pszenicy twardej. (ang. Influence of large doses of alternating magnetic field on germination of durum wheat seeds). Acta Sci Pol, Technica Agraria. 2005;2(4):11-20. https://wydawnictwo.up.lublin.pl/files/wydawnictwo-czasopisma/acta/technica_agraria/2005/2/acta_tech_4(2)_art_02.pdf
  • [51] Racuciu M, Creanga DE. Biological effects of low frequency electromagnetic field in Cucurbita pepo. Proc Third Moscow Int Symp Magnetism. 26-30 June 2005, Moscow, Russia. 2005;278-82. http://magn.ru/proc/pdf/278.pdf
  • [52] Afzal I, Rehman HU, Naveed M, Basra SMA. Recent advanced in seed enhancements. In: New Challenges in Seed Biology – Basic and Translational Research Driving Seed Technology. 2016:47-74. DOI: 10.5772/64791
  • [53] Janas R, Górnik K, Grzesik M, Romanowska-Duda Z, van Duijn B. Effectiveness of pulsed radio frequency in seed quality improvement of vegetable plant species. Int Agrophys. 2019;33:463-471. DOI: 10.31545/intagr/108953
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-904d9451-18d4-4510-847c-fffd10666f43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.