PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First-principles study of atomic structure and electronic properties of Si and F doped anatase TiO2

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chemical doping represents one of the most effective ways in engineering electronic structures of anatase TiO2 for practical applications. Here, we investigate formation energies, geometrical structures, and electronic properties of Si-, F-doped and Si/F co-doped anatase TiO2 by using spin-polarized density functional theory calculation. We find that the co-doped TiO2 is thermodynamically more favorable than the Si- and F-doped TiO2. Structural analysis shows that atomic impurity varies crystal constants slightly. Moreover, all the three doped systems show a pronounced narrowing of band gap by 0.33 eV for the F-doped TiO2, 0.17 eV for the Si-doped TiO2, and 0.28 eV for the Si/F-co-doped TiO2, which could account for the experimentally observed redshift of optical absorption edge. Our calculations suggest that the Si/F-co-doping represents an effective way in tailoring electronic structure and optical properties of anatase TiO2.
Wydawca
Rocznik
Strony
549--554
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
autor
  • Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
autor
  • Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
autor
  • Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
autor
  • State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
autor
  • Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Bibliografia
  • [1] LINSEBIGLER A.L., LU G.Q., YATES J.T., Chem. Rev., 95 (1995), 735.
  • [2] FUJISHIMA A., HONDA K., Nature, 238 (1972), 37.
  • [3] GRATZEL M., Nature, 414 (2001), 338.
  • [4] ASAHI R., MORIKAWA T., OHWAKI T., AOKI K., TAGA Y., Sicence, 293 (2001), 269.
  • [5] SATO S., Phys. Chem. Lett., 123 (1986), 126.
  • [6] ZHOU P., YU J.G., WANG Y.X., Appl. Catal. BEnviron., 142 (2013), 45.
  • [7] YU J.G., XIANG Q.J., ZHOU M.H., Appl. Catal. BEnviron., 90 (2009), 595.
  • [8] CHI B., ZHAO L., JIN T., J. Phys. Chem. C, 111 (2007), 6189.
  • [9] YU J.G., ZHOU P., LI Q., Phys. Chem. Chem. Phys., 15 (2013), 12040.
  • [10] LIN Z., ORLOV A., LAMBERT R.M., PAYNE M.C., J. Chem. Phys. B, 109 (2005), 20948.
  • [11] VALENTIN C.D., PACCHIONI G., SELLONI A., Phys. Rev. B, 70 (2004), 085116.
  • [12] GAI Y., LI J., LI S.S., XIA J.B., WEI S.H., Phys. Rev. Lett., 102 (2009), 036402.
  • [13] XING M.Y., ZHANG J.L., CHEN F., J. Phys. Chem. C, 113 (2009), 12848.
  • [14] GU D.E., YANG B.C., HU Y.D., Catal. Commun., 9 (2008), 1472.
  • [15] ZHU W.G., QIU X.F., IANCU V., Phys. Rev. Lett., 103 (2009), 226401.
  • [16] SUN R., WANG Z.C., SHIBATA N., IKUHARA Y., RSC Adv., 5 (2015), 18506.
  • [17] YANG H.G., SUN C.H., QIAO S.Z., ZOU J., LIU G., SMITH S.C., CHENG H.M., LU G.Q., Nature, 453 (2008), 638.
  • [18] ZHOU P., WU J.H., YU W.L., ZHAO G.H., FANG G.J., CAO S.W., Appl. Surf. Sci., 319 (2014), 167.
  • [19] OH S.M., KIM S.S., LEE J.E., ISHIGAKI T., PARK D.W., Thin Solid Films, 435 (2003), 252.
  • [20] OZAKI H., IWAMOTO S., INOUE M., Chem. Lett., 34 (2005), 1082.
  • [21] YANG K.S., DAI Y., HUANG B.B., Chem. Phys. Lett., 456 (2008), 71.
  • [22] SHI W.M., CHEN Q.F., XU Y., WU D., HUO C.F., Appl. Surf. Sci., 257 (2011), 3000.
  • [23] YANG X.X., CAO C.D., ERICKSON L., HOHN K., MAGHIRANG R., KLABUNDE K., Appl. Catal. BEnviron., 91 (2009), 657.
  • [24] LONG R., ENGLISH N.J., Chem. Mater., 22 (2010), 1616.
  • [25] OZAKI H., IWAMOTO S., INOUE M., Ind. Eng. Chem. Res., 47 (2008), 2287.
  • [26] ZHANG J.F., ZHOU P., LIU J.J., YU J.G., Phys. Chem. Chem. Phys., 16 (2014), 20382.
  • [27] KOHN W., SHAM L.J., Phys. Rev. A, 140 (1965), 1133.
  • [28] PAYNE M.C., TETER M.P., ALLEN D.C., ARIAS T.A., JOANNOPOULOS J.D., Rev. Mod. Phys., 64 (1992), 1045.
  • [29] PERDEW J.P., BURKE K., ERNZERHOF M., Phys. Rev. Lett., 77 (1996), 3865.
  • [30] LI H.P., LV S.H., WANG Z.C., XIA Y.J., BAI Y.J., LIU X.J., MENG J., J. Appl. Phys., 111 (2012), 103718.
  • [31] LV S.H., LI H.P., WANG Z.C., HAN L., LIU Y., LIU X.J., MENG J., Appl. Phys. Lett., 99 (2011), 202110.
  • [32] LONG R., ENGLISH N.J., Chem. Phys. Lett., 478 (2009), 175.
  • [33] ZENG W., LIU T.M., WANG Z.C., TSUKIMOTO S., SAITO M., IKUHARA Y., Mater. Trans., 51 (2010), 171.34
  • [34] WANG Z.C., SAITO M., MCKENNA K.P., GU L., TSUKIMOTO S., SHLUGER A.L., IKUHARA Y., Nature, 479 (2011), 380.
  • [35] FAHMI A., MINOT C., SILVI B., CAUSA M., Phys. Rev. B, 47 (1993), 11717.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9047a011-602c-4806-b582-b009a8b0ea71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.