PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of stenosis rate and Reynolds number on local flow characteristics and plaque formation around the atherosclerotic stenosis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Atherosclerosis causes plaque to build-up in arteries. Effect of the specific local hemodynamic environment around an atherosclerotic plaque on the thrombosis formation does not remain quite clear but is believed to be crucial. The aim of this study is to uncover the flow effects on plaques formation. Methods: To study the mechanically regulated plaque formation, the flow fields in artery blood vessels with different stenosis rates at various Reynolds numbers were simulated numerically with the two-dimensional axisymmetric models, and the hemodynamic characteristics around the plaque were scaled with stenosis rate and Reynolds number. Results: The results showed that increases of both Reynolds number and stenosis rate facilitated the occurrence of flow separation phenomenon, extended recirculation zone, and upregulated the maximum normalized wall shear stress near the plaque throat section while downregulated the minimal normalized wall shear stress at the front shoulder of plaque, as it should be; in the atherosclerotic plaque leeside of the recirculation zone, an obvious catch bond region of wall shear stress might exist especially under low Reynolds number with stenosis rate smaller than 30%. This catch bond region in the plaque leeside might be responsible for the LBF (low blood flow)-enhanced formation of the atherosclerotic plaque. Conclusions: This work may provide a novel insight into understanding the biomechanical effects behind the formation and damage of atherosclerotic plaques and propose a new strategy for preventing atherosclerotic diseases.
Rocznik
Strony
135--147
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
autor
  • Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
  • Department of Electrical Engineering, School of Naval Architecture and Ocean Engineering, Guangzhou Maritime University, Guangzhou, China
autor
  • Collaborative Innovation Center for Biomedicines and School of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, China
autor
  • Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
autor
  • Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
autor
  • Department of Naval Architecture and Ocean Engineering, School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, China
autor
  • Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
autor
  • Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
Bibliografia
  • [1] BAHRAMIAN A., Simultaneous effects of mesh refinement, grid configuration and wall boundary condition on prediction of pressure gradients and velocity profiles of microparticles in a conical fluidized bed, Particuology, 2019, 43, 123–136.
  • [2] BANERJEE M.K., GANGULY R., DATTA A., Variation of Wall Shear Stress and Flow Characteristics Across Cosine Shaped Stenotic Model with Flow Reynolds Number and Degree of Stenosis, International Journal of Fluid Mechanics Research, 2010, 37 (6), 530–552.
  • [3] BENTZON J.F., OTSUKA F., VIRMANI R., FALK E., Mechanisms of plaque formation and rupture, Circ. Res., 2014, 114 (12), 1852–1866.
  • [4] BIT A., ALBLAWI A., CHATTOPADHYAY H., QUAIS Q.A., BENIM A.C., RAHIMI-GORJI M., DO H.T., Three dimensional numerical analysis of hemodynamic of stenosed artery considering realistic outlet boundary conditions, Comput. Methods Programs Biomed., 2020, 185, 105163.
  • [5] BIT A., CHATTOPADHAY H., Acute Aneurysm is more Critical than Acute Stenoses in Blood Vessels: a Numerical Investigation Using Stress Markers, BioNanoScience, 2018, 8 (1), 329–336.
  • [6] BIT A., CHATTOPADHYAY H., Numerical investigations of pulsatile flow in stenosed artery, Acta Bioeng. Biomech., 2014, 16 (4), 33–44.
  • [7] BIT A., GHAGARE D., RIZVANOV A.A., CHATTOPADHYAY H., Assessment of Influences of Stenoses in Right Carotid Artery on Left Carotid Artery Using Wall Stress Marker, Biomed. Res. Int., 2017, 2935195.
  • [8] CASSANOVA R.A., GIDDENS D.P., Disorder distal to modeled stenoses in steady and pulsatile flow, Journal of Biomechanics, 1978, 11 (10), 441–453.
  • [9] CHATTOPADHYAY H., HIMADRI, BIT A., ARINDAM , Assessment of rheological models for prediction of transport phenomena in stenosed artery, Progress in computational fluid dynamics: An international journal, 2014.
  • [10] CHO Y.I., KENSEY K.R., Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1. Steady flows, Biorheology, 1991, 28 (3–4), 241–262.
  • [11] CLARK C., The propagation of turbulence produced by a stenosis, Journal of Biomechanics, 1980, 13 (7), 591–604.
  • [12] COPPOLA G., CARO C., Arterial geometry, flow pattern, wall shear and mass transport: potential physiological significance, J. R. Soc. Interface, 2009, 6 (35), 519–528.
  • [13] ESWARI J.S., MAJDOUBI J., NAIK S., GUPTA S., BIT A., RAHIMI-GORJI M., SALEEM A., Prediction of stenosis behaviour in artery by neural network and multiple linear regressions, Biomech. Model Mechanobiol., 2020, 19 (5), 1697–1711.
  • [14] GRAMIGNA V., CARUSO M.V., ROSSI M., SERRAINO G.F., RENZULLI A., FRAGOMENI G., A numerical analysis of the aortic blood flow pattern during pulsed cardiopulmonary bypass, Comput. Methods Biomech. Biomed. Engin., 2015, 18 (14), 1574–1581.
  • [15] HUANG B., LING Y., LIN J., FANG Y., WU J., Mechanical regulation of calcium signaling of HL-60 on P-selectin under flow, Biomed. Eng. Online, 2016, 15 (Suppl. 2), 153.
  • [16] KAMANGAR S., BADRUDDIN I.A., AHAMAD N.A., GOVINDARAJU K., NIK-GHAZALI N., SALMAN AHMED N.J., BADARUDIN A., YUNUS KHAN T.M., The Influence of Geometrical Shapes of Stenosis on the Blood Flow in Stenosed Artery, Sains Malaysiana, 2017, 46 (10), 1923–1933.
  • [17] KIM S., GIDDENS D.P., Mass transport of low density lipoprotein in reconstructed hemodynamic environments of human carotid arteries: the role of volume and solute flux through the endothelium, J. Biomech. Eng., 2015, 137 (4), 041007–0410017.
  • [18] MARSHALL B.T., LONG M., PIPER J.W., YAGO T., MCEVER R.P., ZHU C., Direct observation of catch bonds involving celladhesion molecules, Nature, 2003, 423 (6936), 190–193.
  • [19] MENG H., TUTINO V.M., XIANG J., SIDDIQUI A., High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis, AJNR. American Journal of Neuroradiology, 2014, 35 (7), 1254–1262.
  • [20] PRATUMWAL Y., LIMTRAKARN W., MUENGTAWEEPONGSA S., PHAKDEESAN P., INTHARAKHAM K., Whole blood viscosity modeling using power law, Casson, and Carreau Yasuda models integrated with image scanning U-tube viscometer technique, Songklanakarin Journal of Ence and Technology, 2017, 39 (5), 625–631.
  • [21] SAKAMOTO A., JINNOUCHI H., TORII S., VIRMANI R., FINN A.V., Understanding the Impact of Stent and Scaffold Material and Strut Design on Coronary Artery Thrombosis from the Basic and Clinical Points of View, Bioengineering (Basel), 2018, 5 (3).
  • [22] STEIN P.D., SABBAH H.N., Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves, Circ. Res., 1976, 39 (1), 58–65.
  • [23] TOMASZEWSKI M., SYBILSKI K., BARANOWSKI P., MAŁACHOWSKI J., Experimental and numerical flow analysis through arteries with stent using particle image velocimetry and computational fluid dynamics method, Biocybernetics and Biomedical Engineering, 2020, 40 (2), 740–751.
  • [24] TOMASZEWSKI M., SYBILSKI K., MAŁACHOWSKI J., WOLAŃSKI W., BUSZMAN P.P., Numerical and experimental analysis of balloon angioplasty impact on flow hemodynamics improvement, Acta of Bioengineering and Biomechanics, 2020, 22 (3).
  • [25] VAN DER WAL A.C., BECKER A.E., Atherosclerotic plaque rupture – pathologic basis of plaque stability and instability, Cardiovascular Research, 1999, 41 (2), 334–344.
  • [26] WEI L., LEO H.L., CHEN Q., LI Z., Structural and Hemodynamic Analyses of Different Stent Structures in Curved and Stenotic Coronary Artery, Front Bioeng. Biotechnol., 2019, 7, 366.
  • [27] WOODWARD P., COLELLA P., The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, 1984, 54 (1), 115–173.
  • [28] YAGO T., LOU J., WU T., YANG J., MINER J.J., COBURN L., LÓPEZ J.A., CRUZ M.A., DONG J.-F., MCINTIRE L.V., MCEVER R.P., ZHU C., Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF, Journal of Clinical Investigation, 2008, 118 (9), 3195–3207.
  • [29] YU H., HUANG G.P., LUDWIG B.R., YANG Z., An In-Vitro Flow Study Using an Artificial Circle of Willis Model for Validation of an Existing One-Dimensional Numerical Model, Ann. Biomed. Eng., 2019, 47 (4), 1023–1037.
  • [30] ZHANG J.-M., ZHONG L., LUO T., HUO Y., TAN S.Y., WONG A.S.L., SU B., WAN M., ZHAO X., KASSAB G.S., LEE H.P., KHOO B.C., KANG C.-W., BA T., TAN R.S., Numerical simulation and clinical implications of stenosis in coronary blood flow, BioMed Research International, 2014, 514729-514729.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-903f0d53-e593-4535-a0ba-a75469608b04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.