PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dendrochronology and extreme pointer years in the tree-ring record (AD 1951–2011) of polar willow from southwestern Spitsbergen (Svalbard, Norway)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Greater warmth and precipitation over the past several decades in the High Arctic, as recorded in meteorological data, have caused shrub expansion and affected growth ring widths. The main aim of the study was to develop a tree-ring chronology of polar willow (Salix polaris Wahlenb.) from southwest Spitsbergen, attempt to explain its extreme pointer years (extremely low value of growth-ring widths) and to demonstrate the dendrochronological potential of this species. This plant is a deciduous, prostrate, creeping dwarf shrub that produces anatomically distinct annual growth rings with the consistent ring width variation. After using serial sectioning we developed rigorously cross-dated ring width chronology covering the period 1951–2011. Since the beginning of the 1980s an increase of the mean and maximum growth ring width has been observed which is consistent with the increase of both temperature and precipitation in the Arctic reported from meteorological sources. Nine negative extreme years were distinguished and explained by complex hydroclimatic drivers, which highlight the importance of availability of moisture from snowpack and spring precipitation. An additional negative factor present in the years with very low dwarf shrubs growth is rapid thawing and fast freezing during winter as well as low sunshine duration. Our results contradict the prior assumption that inter-annual tree growth variability of dwarf shrubs from polar regions is controlled simply by temperature.
Wydawca
Czasopismo
Rocznik
Strony
84--95
Opis fizyczny
Bibliogr. 74 poz., rys., wykr.
Twórcy
autor
  • University of Wroclaw, Institute of Geography and Regional Development, Pl. Uniwersytecki 1, 50-137 Wroclaw, Poland
autor
  • University of Silesia, Faculty of Earth Sciences, Centre for Polar Studies KNOW (Leading National Research Centre), Bedzinska 60, 41-200 Sosnowiec, Poland
  • University of Silesia, Faculty of Earth Sciences, Department of Climatology, Bedzinska 60, 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Bär A, Bräuning A and Löffler J, 2006. Dendroecology of dwarf shrubs in the high mountains of Norway - A methodological approach. Dendrochronologia 24: 17-27.
  • 2. Bär A, Bräuning A and Löffler J, 2007. Ring-width chronologies of the alpine dwarf shrub Empetrum hermaphroditum from the Norwegian mountains. IAWA Journal 28 (3): 325-338.
  • 3. Blok D, Sass-Klaassen U, Schaepman-Strub G, Heijmans MMPD, Sauren P and Berendse F, 2011. What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 8: 1169-1179, 10.5194/bg-8-1169-2011
  • 4. Blok D, Weijers S, Welker JM, Cooper EJ, Michelsen A, Löffler J and Elberling B, 2015.Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in higharctic Svalbard tundra. Environmental Research Letters 10: 044008, 10.1088/1748-9326/10/4/044008
  • 5. Błaszczyk M, Jania JA and Kolondra L, 2013. Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century. Polar Polish Research 34(4): 327-352, 10.2478/popore-2013-0024
  • 6. Bokhorst S, Bjerke JW, Tømmervik H, Callaghan TV and Phoenix GK, 2009. Winter warming events damage sub-Arctic vegetation: Consistent evidence from an experimental manipulation and a natural event. Journal of Ecology 97: 1408-1415, 10.111 1/j.1365-2745.2009.01554.x
  • 7. Bokhorst S, Bjerke JW, Tømmervik H, Preece C and Phoenix GK, 2012. Ecosystem Response to Climatic Change: The Importance of the Cold Season. Ambio 41(Suppl3): 246-255, 10.1007/s13280-012-0310-5
  • 8. Briffa KR, Osborn TJ and Schweingruber FH, 2004. Large-scale temperature influences from tree rings: a review. Global Planetary Change 40: 11-26.
  • 9. Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiya-tov SG and Vaganov EA, 2001. Low-frequency variations from northern tree ring density network. Journal of Geophysical Research 106(D3): 2929-2941, 10.1029/2000JD900617
  • 10. Brönnimann S, 2015. Climatic Changes Since 1700. Springer: 360pp.
  • 11. Buchwal A, Rachlewicz G, Fonti P, Cherubini P and Gärtner H, 2013. Temperature modulates intra-plant growth of Salix polaris from a high Artic site (Svalbard). Polar Biology 36: 1305-1318, 10.1007/s00300-013-1349-x
  • 12. Büntgen U and Schweingruber FH, 2010. Environmental change without climate change? New Phytologist 188: 646-651, 10.1111/j.1469-8137.2010.03342.x
  • 13. Büntgen U, Hellmann L, Tegel W, Normand S, Myer-Smith I, Kirdya-nov A, Nievergelt D, Schweingruber FH, 2015. Temperature driven germination pulse of Arctic dwarf shrub communities. Journal ofEcology 103(2): 489-501, 10.1111/1365-2745.12361
  • 14. Büntgen U, Raible CC, Frank D, Helama S, Cunningham L, Hofer D, Nievergelt D, Verstege A, Timonenh M, Stenseth NCh and Esper J, 2011. Causes and consequences of past and projected scandinavian summer temperatures, 500-2100 AD. PLoS ONE 6(9): e25133, 10.1371/journal.pone.0025133
  • 15. Callaghan TV and Tweedie CE, 2011. Multi-decadal changes in tundra environments and ecosystems: the International Polar Year- back to the future project. Ambio 40: 555-557.
  • 16. Callaghan TV, Sømme L and Sonesson M, 1993. Impacts of climate change at high latitudes on terrestrial plants and invertebrates. Research report for the Directorate for Nature Management Nr. 1993 - 1, Trondheim: 67pp.
  • 17. Cook ER and Kariukstis LA (eds), 1990. Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer Academic, Boston: 394pp.
  • 18. Cook ER, 1985. A Time Series Analysis Approach to Tree-Ring Standardization. School of Renewable Natural Resources University of Arizona, Tuscon: 183pp.
  • 19. D'Arrigo R, Wilson R, Liepert B and Cherubini P, 2008. On the 'Divergence Problem' in Northern Forests: A reviev of the tree-ring evidences and possible causes. Global Planetary Change 60: 289-305, 10.1038/nclimate2697
  • 20. Epstein HE, Myers-Smith I, Walker DA, 2013. Recent dynamics of arctic and sub-arctic vegetation. Environmental Research Letters 8: 015040. 10.1088/1748-9326/8/1/015040
  • 21. Esper J and Schweingruber FH, 2004. Large-scale treeline changes recorded in Siberia. Geophysical Research Letters 31: L06202. 10.1029/2003GL019178
  • 22. Forbes BC, Macias Fauria M and Zetterberg P, 2010. Russian Arctic warming and 'greening' are closely tracked by tundra shrub willows. Global Change Biology 16: 1542-1554, 10.1111/j. 1365-2486.2009.02047.x
  • 23. Gervais BR and MacDonald GM, 2000. A 403-year record of July temperatures and treeline dynamics of Pinus sylvestris from the Kola Peninsula, northwest Russia. Arctic, Antarctic, and Alpine Research 32: 295-302, 10.2307/1552528
  • 24. Hagen JO, Kohler M and Winther JG, 2003. Glaciers in Svalbard: mass balance, runoff and freshwater flux. Polar Research 22: 145-159, 10.1111/j.1751-8369.2003.tb00104.x
  • 25. Halldórsson G, Sigurdsson BD, Hrafnkelsdóttir B, Oddsdóttir ES, Eggertsson O and Ólafsson E, 2013. New arthropod herbivores on trees and shrubs in Iceland and changes in pest dynamics: A review. Icelandic Agricultural Sciences 26: 69-84.
  • 26. Hallgrímsson H, Halldórsson G and Kjartansson BP, 2006. Birkidauðinn á Austurlandi 2005(Dieback of birch in the east in 2005). Journal of Icelandic Forestry 2: 46-55 (in Icelandic).
  • 27. Hallinger M, Manthey M and Wilmking M, 2010. Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytologist 186: 890-899, 10.1111/j.1469-8137.2010.03223.x
  • 28. Holmes RL, 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69-78.
  • 29. Holzkämper S, Kuhry P, Kultti S, Gunnarson B and Sonninen E, 2008. Stable isotopes in tree rings as proxies for winter precipitation changes in the Russian Arctic over the past 150 years. Geochronometria 32: 37-46, 10.2478/v10003-008-0025-6
  • 30. Hornsund GLACIOTOPOCLIM Database, 2014. WEB site: <http://www.glacio-topoclim.org>. Accessed 2015 June 01.
  • 31. ITRDB The International Tree-Ring Data Bank, 2015a. WEB site: <https://www.ncdc.noaa.gov/paleo/study/11228>. Accessed 2015 June 01.
  • 32. ITRDB The International Tree-Ring Data Bank, 2015b. WEB site: <https://www.ncdc.noaa.gov/paleo/study/3293>. Accessed 2015 June 01.
  • 33. Jacoby GC and D'Arrigo R, 1989. Reconstructed northern hemisphere annual temperature since 1671 based on high latitude tree-ring data from North America. Climatic Change 14: 39-59, 10.1007/BF00140174
  • 34. Jacoby GC, Brubaker LB, Garfinkel H, Lawson MP and Kuivinen KC, 1982. The Arctic. In: Hughes MK, Kelly PM, Pilcher JR and La-Marche VC, eds., Climate from tree rings. Cambridge University Press, Cambridge: 107-118.
  • 35. Jepsen JU, Biuw M, Ims RA, Kapari L, Schott T, Vindstad OPL and Hagen SB, 2013. Ecosystem impacts of a range expanding forest defoliator at the forest-tundra ecotone. Ecosystems 16(4): 561-575, 10.1007/s10021-012-9629-9
  • 36. Kappen L, 1993. Plant activity under snow and ice, with particular reference to lichens. Arctic 46 (4): 297-302.
  • 37. Kolishchuk VG, 1990. Dendroclimatological study of prostrate woody plants. In: Cook ER and Kairiukstis LA, eds., Methods of dendrochronology. Applications in the environmental sciences. Kluwer, London: 51-55.
  • 38. Leszkiewicz J and Caputa Z, 2004. The thermal condition of the active layer in the permafrost at Hornsund, Spitsbergen. Polish Polar Research 25(3-4): 223-239.
  • 39. Lindner L, Marks L, Roszczynko W and Semil J, 1991. Age of raised marine beaches of northern Hornsund Region, South Spitsbergen. Polish Polar Research 12: 161-182.
  • 40. Mallik AU, Wdowiak JV and Cooper EJ, 2011. Growth and reproductive responses of Cassiope tetragona, a circumpolar evergreen shrub, to experimentally delayed snowmelt. Arctic, Antarctic and Alpine Research 43: 404-409, 10.1657/1938-4246-43.3.404
  • 41. Manecki A, Czerny J, Kieres A, Manecki M and Rajchel J, 1993. Geological map of the SWpart of Wedel Jarlsberg Land, Spitsbergen, 1: 25 000. University of Mining and Metallurgy, Cracow.
  • 42. Marsz AA and Styszyńska A (eds.), 2013. Climate and Climate Change at Hornsund, Svalbard. The publishing house of Gdynia Maritime University, Gdynia: 402pp.
  • 43. Migała K, Głowacki P and Klementowski J, 2004. Thaw dynamics of the active layer of permafrost in the Hornsund area—SW Spitsbergen and its circumstances. Polish Polar Studies, 30th International Polar Symposium, Gdynia: 251-262.
  • 44. Migała K, Wojtuń B, Szymański W and Muskała P, 2014. Soil moisture and temperature variation under different types of tundra vegetation during the growing season: A case study from the Fuglebek-ken catchment, SW Spitsbergen. Catena 116: 10-18, 10.1016/j.catena2013.12.007
  • 45. Myers-Smith I, Hallinger M, Blok D, Sass-Klaassen U, Rayback SA, Weijers S, Trant A, Tape KD, Naito A, Wipf S, Rixen C, Dawes M, Wheeler J, Buchwal A, Baittinger C, Macias-Fauria M, Forbes BC, Lévesque E, Boulanger-Lapointe N, Beil I, Ravolainen V and Wilmking M, 2015b. Methods for measuring arctic and alpine shrub growth: a review. Earth-Science Reviews 140: 1-13, 10.1016/j.earscirev.2014.10.004
  • 46. Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Lévesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, Jørgensen RH, Buchwal A, Bu-ras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS and Vellend M, 2015a. Climate sensitivity of shrub expansion across the tundra biome. Nature Climate Change 5: 887-891, 10.1038/nclimate2697
  • 47. Niedźwiedź T, 2006. Calendar of circulation types for Spitsbergen: December 1950 — December 2006. Computer data set at the Department of Climatology, Faculty of Earth Sciences, University of Silesia, Sosnowiec.
  • 48. Nordli O, 2010. The Svalbard Airport temperature series. Bulletin of Geography—physical geography series 3: 5-25.
  • 49. Opała M, Migała K and Owczarek P, 2014. Tree rings of downy birch (Betula pubescens) from Island of Tromsøya (Norway) as proxies for past temperature changes in the Low Arctic. In: Migała K, Owczarek P, Kasprzak M and Strzelecki MC, eds., New perspectives in polar research. University of Wrocław: 269-280.
  • 50. Owczarek P, 2009. Dendrogeomorphological potential of Salicaceae from SW Spitsbergen (Norway). In: Kaczka R, Malik I, Owczarek P, Gärtner H, Helle G and Heinrich I, eds., TRACE - Tree Rings in Archaeology, Climatology and Ecology Vol. 7. Scientific TechnicalReport STR 09/03, Potsdam: 181-186.
  • 51. Owczarek P, 2010. Talus cone activity recorded by tree-rings of Arctic dwarf shrubs: a study case from SW Spitsbergen, Norway. Geologija 52: 34-39, 10.2478/v10056-010-0003-3
  • 52. Owczarek P, Latocha A, Wistuba M and Malik I, 2013. Reconstruction of modern debris flow activity in the arctic environment with the use of dwarf shrubs (south-western Spitsbergen) - a new dendro-chronological approach.Zeitschrift für Geomorphologie Supp57(3): 75-95, 10.1127/0372-8854/2013/S-00145
  • 53. Owczarek P, Nawrot A, Migała K, Malik I and Korabiewski B, 2014a. Flood-plain responses to contemporary climate change in small High-Arctic basins (Svalbard, Norway). Boreas 43: 384-402, 10.1111/bor.12061
  • 54. Owczarek P, Opała M and Migała K, 2014b. Climatic signals in growth rings of the High Arctic dwarf shrub Salix polaris (Wahlenb.): a case study from SW Spitsbergen, Svalbard. In: Migała K, Owczarek P, Kasprzak M and Strzelecki MC, eds., New perspectives in polar research. University of Wrocław: 257-268.
  • 55. Påhlsson L, 1985. List of vegetation types and land forms in the Nordic countries with the plant species of the vegetation types in Latin, the Nordic languages and English. Nordic Council of Ministers, Oslo: 69pp.
  • 56. Przybylak R, 2016. The Climate of the Arctic. Springer: 287pp.
  • 57. Rayback SA and Henry HR, 2005. Dendrochronological potential of the arctic dwarf shrubCassiope tetragona. Tree-Ring Research 61:43-53, 10.3959/1536-1098-61.1.43
  • 58. Rayback SA, Lini A and Berg DL, 2012. The dendroclimatological potential of an alpine shrub, Cassiope mertensiana, from Mount Rainier, WA, USA. Geografiska Annaler Series A: Physical Geography94: 413^27, 10.1111/j.1468-0459.2012.00463.x
  • 59. Rønning OI, 1996. The Flora of Svalbard. Norwegian Polar Institute, Oslo: 184pp.
  • 60. Schmidt NM, Baittinger C and Forchhammer MC, 2006. Reconstructing century-long regimes using estimates of high Arctic Salix arctica radial growth.Arctic, Antarctic and Alpine Research 38: 257-262, 10.1657/1523-0430(2006)38[257:RCSRUE]2.0.CO;2
  • 61. Schmidt NM, Baittinger C, Kollmann J and Forchhammer MC, 2010. Consistent dendrochronological response of the dioecious Salix arctica to variation in local snow precipitation across gender and vegetation types.Arctic, Antarctic and Alpine Research 42: 471-475, 10.1657/1938-4246-42.4.471
  • 62. Schweingruber FH and Dietz H, 2001. Annual rings in the xylem of dwarf shrubs and perennial dicotyledonous herbs. Dendrochrono-logia 19:115-126.
  • 63. Schweingruber FH and Poschold P, 2005. Growth rings in herbs and shrubs: life span, age determination and stem anatomy. ForestSnow and Landscape Research 79: 415pp.
  • 64. Schweingruber FH, Hellmann L, Tegel W, Braun S, Nievergelt D and Büntgen U, 2013. Evaluating the wood anatomical and dendroeco-logical potential of arctic dwarf shrub communities. IA WA Journal 34(4): 485-497, 10.1163/22941932-00000039
  • 65. Speer J, 2010.Fundamentals of Tree-Ring Research. University ofArizona Press, Arizona: 333pp.
  • 67. Tremblay B, Lévesque E and Boudreau S, 2012. Recent expansion of erect shrubs in the Low Arctic: evidence from Eastern Nunavik. Environmental Research Letters 7, 10.1088/1748-9326/7/3/035501
  • 68. Vienna Institute of Archaeological Science (VIAS), 2005. On Screen Measuring and Image Analysis. Time Table. Installation and Instruction Manual, Version 2.1. VIAS: Vienna.
  • 69. Warren-Wilson J, 1964. Annual growth of Salix arctica in the high-Arctic. Annales of Botany 28: 71-78.
  • 70. Weijers S, Also IG, Eidesen PB, Broekman R, Loonen MJJE and Ro-zema J, 2012. No divergence in Cassiope tetragona: persistence of growth response along a latitudinal temperature gradient and under multi-year experimental warming. Annals of Botany 110: 653-665.
  • 71. Weijers S, Broekman R and Rozema J, 2010. Dendrochronology in the High Arctic: July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona. Quaternary Science Reviews 29: 3831-3842, 10.1016/j.quascirev.2010.09.003
  • 72. Wigley TML, Briffa KR and Jones PD, 1984. On the average value of correlated time-series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23: 201-213, 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
  • 73. Woodcock H and Bradley RS, 1994. Salix arctica (Pall.): its potential for dendroclimatological studies in the High Arctic. Dendrochronologia 12: 11-22.
  • 74. Zalatan R and Gajewski K, 2006. Dendrochronological potential of Salix alaxensis from the Kuujjua River area, western Canadian Arctic. Tree-Ring Research 62: 75-82, 10.3959/1536-1098-62.2.75
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-903bf5ff-0af8-4d21-b97f-61a8abe251c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.