PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Attenuation parameters of polyvinyl alcohol-tungsten oxide composites at the photon energies 5.895, 6.490, 59.54 and 662 keV

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The growing demand for lightweight, non-toxic and effective X- and γ-ray shielding materials in various fields has led to the exploration of various polymer composites for shielding applications. In this study, tungsten filled polyvinyl alcohol (PVA) composites of varying WO3 concentrations (0 - 50 wt%) were prepared by solution cast technique. The structural, morphological, and thermal properties of the prepared composite films were studied using X-ray diffraction technique (XRD), Scanning electron microscopy (SEM) and Thermogravimetric analysis (TGA). The AC conductivity studies showed the low conductivity property of the composites. The X-ray (5.895 and 6.490 keV) and γ-ray (59.54 and 662 keV) attenuation studies performed using CdTe and NaI(Tl) detector spectrometers revealed a noticeable increase in shielding efficiency with increase in filler wt%. The effective atomic number (Zeff) calculated by the direct method agreed with the values obtained using Auto-Zeff software. The % heaviness showed that tungsten filled polyvinyl alcohol composites are lighter than traditional shielding materials.
Rocznik
Strony
77--85
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Physics and Electronics, CHRIST (Deemed to be University), Bangalore Central Campus, Bengaluru-560029, Karnataka, India
  • Department of Physics and Electronics, CHRIST (Deemed to be University), Bangalore Central Campus, Bengaluru-560029, Karnataka, India
  • Department of Physics and Electronics, CHRIST (Deemed to be University), Bangalore Central Campus, Bengaluru-560029, Karnataka, India
Bibliografia
  • [1] Singh N, Singh KJ, Singh K, Singh H. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials. Nucl Instrum Methods B. 2004;225(3):305-309.
  • [2] Arbuzov VI, Fyodorov YK. Spectral, radiation-optical and shielding properties of phosphate glasses with high lead content. Adv Mater Res. 2008;39-40:213-218.
  • [3] Manohara SR, Hanagodimath SM, Gerward L. Photon interaction and energy absorption in glass: A transparent gamma ray shield. J Nucl Mater. 2009;393(3):465-472.
  • [4] Singh VP, Badiger NM. Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Phys Chem. 2015;41(3):276-283.
  • [5] Kaewkhao J, Limsuwan P. Mass attenuation coefficients and effective atomic numbers in phosphate glass containing Bi2O3, PbO and BaO at 662 keV. Nucl Instrum Methods. 2010;619(1-3):295-297.
  • [6] Nambiar S, Yeow JTW. Polymer composite materials for radiation protection. ACS Appl Mater Interfaces. 2012;4(11):5717-5726.
  • [7] Harish V, Nagaiah N, Harish Kumar HG. Lead oxides filled isophthalic resin polymer composites for gamma radiation shielding applications. Indian J Pure Appl Phy. 2012;50(11):847-850.
  • [8] Li R, Gu Y, Zhang G, Yang Z, Li M, Zhang Z. Radiation shielding property of structural polymer composite: Continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Compos Sci Technol. 2017;143:67-74.
  • [9] Husain HS, Rasheed Naji NA, Mahmood BM. Investigation of gamma ray shielding by polymer composites. IOP Conf Ser: Mater Sci Eng. 2018;454:012131.
  • [10] Yue K, Luo W, Dong X, et al. A new lead-free radiation shielding material for radiotherapy. Radiat Prot Dosim. 2009;133:256-260.
  • [11] Wang H, Zhang H, Su Y, et al. Preparation and radiation shielding properties of Gd2O3/PEEK composites. Polym Compos. 2014;36(4):651-659.
  • [12] Kim Y, Park S, Seo Y. Enhanced X-ray shielding ability of polymer-nonleaded metal composites by multilayer structuring. Ind Eng Chem Res. 2015;54(22):5968-5973.
  • [13] Soylu HM, Lambrecht Y, Ersöz OA. Gamma radiation shielding efficiency of a new lead-free composite material. J Radioanal Nucl Chem. 2015;305(2):529-534.
  • [14] Erol A, Pocan I, Yanbay E, et al. Radiation shielding of polymer composite materials with wolfram carbide and boron carbide. Radiat Prot Environ. 2016;39(1):3-6.
  • [15] Atashi P, Rahmani S, Ahadi B, Rahmati A. Efficient, flexible and lead-free composite based on room temperature vulcanizing silicone rubber/W/Bi2O3 for gamma ray shielding application. J Mater Sci: Mater Electron. 2018;29(14):12306-12322.
  • [16] AbuAlRoos NJ, Baharul Amin NA, Zainon R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat Phys Chem. 2019;165:108439.
  • [17] Chai H, Tang X, Ni M, et al. Preparation and properties of novel, flexible, lead-free X-ray-shielding materials containing tungsten and bismuth(III) oxide. J Appl Polym Sci. 2016;133(10):43012.
  • [18] Ambika MR, Nagaiah N, Harish V, et al. Preparation and characterisation of isophthalic-Bi2O3 polymer composite gamma radiation shields. Radiat Phys Chem. 2017;130:351-358.
  • [19] Parvaresh R, Haghparast A, Khoshgard K, et al. An investigation to determine an optimum protective garment material in nuclear medicine. J Biomed Phys Eng. 2018;8(4):381-392.
  • [20] Gerward L, Guilbert N, Jensen KB, Leving H. WinXCom - a program for calculating X-ray attenuation coefficients. Radiat Phys Chem. 2004;71(3-4):653-654.
  • [21] Kerur R, Thontadarya SR, Hanumaiah B. Anomalous X-ray attenuation coefficients around the absorption edges using Mn Kα and Cu Kα X-rays. Appl Radiat Isot. 1994;45(2):159-163.
  • [22] Taylor ML, Smith RL, Dossing F, Franich RD. Robust calculation of effective atomic numbers: The Auto‐Zeff software. Med Phys. 2012;39(4):1769-1778.
  • [23] Bhavani S, Pavani Y, Ravi M, et al. Structural and electrical properties of pure and NiCl2 doped PVA polymer electrolytes. Am J Polym Sci. 2013;3(3):56-62.
  • [24] Chang L, Zhang Y, Liu Y, et al. Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nucl Instrum Methods Phys Res B. 2015;356;88-93.
  • [25] Rithin Kumar NB, Crasta V, Bhajantri RF, Praveen BM. Microstructural and mechanical studies of PVA doped with ZnO and WO3 composites films. J Polym. 2014; 2014: 1-7.
  • [26] Hema M, Selvasekerapandian S, Hirankumar G, et alH. Structural and thermal studies of PVA:NH4I. J Phys Chem Solids. 2009;70(7):1098-1103.
  • [27] Abd El-Kader KAM, Abdel Hamied SF, Mansour AB, et al. Effect of the molecular weights on the optical and mechanical properties of poly (vinyl alcohol) films. Polym Test. 2002;21(7):847-850.
  • [28] El-Khodary A. Evolution of the optical, magnetic and morphological properties of PVA films filled with CuSO4. Physica B: Condens Matter. 2010;405(16):3401-3408.
  • [29] Bhavsar VB, Jha D. Study of refractive index dispersion and optical conductivity of PPy doped PVC films. Indian J Pure App Phys. 2016;54(2):105-110.
  • [30] Habubi NF, Abed BH, Chiad SS. Optical properties of BaCl2 doped poly(vinyl alcohol) films. Iraqi J Phys. 2012;10(17):18-22.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90337258-dc1b-4541-9507-e2f22e7217cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.