PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thulium-doped fibre broadband source for spectral region near 2 micrometers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We demonstrated two methods of increasing the bandwidth of a broadband light source based on amplified spontaneous emission in thulium-doped fibres. Firstly, we have shown by means of a comprehensive numerical model that the full-width at half maximum of the thulium-doped fibre based broadband source can be more than doubled by using specially tailored spectral filter placed in front of the mirror in a double-pass configuration of the amplified spontaneous emission source. The broadening can be achieved with only a small expense of the output power. Secondly, we report results of the experimental thulium-doped fibre broadband source, including fibre characteristics and performance of the thulium-doped fibre in a ring laser setup. The spectrum broadening was achieved by balancing the backward amplified spontaneous emission with back-reflected forward emission.
Twórcy
  • Czech Technical University in Prague, Faculty of Electrical Engineering, Technická 2, 166 27 Prague, Czech Republic
  • Czech Republic 3HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, v.v.i., Za Radnicí 828, Dolní Břežany, 252 41, Czech Republic
autor
  • Institute of Photonics and Electronics of the Czech Academy of Sciences, v.v.i., Chaberská 57, 182 51 Prague, Czech Republic
autor
  • Institute of Photonics and Electronics of the Czech Academy of Sciences, v.v.i., Chaberská 57, 182 51 Prague, Czech Republic
autor
  • Institute of Photonics and Electronics of the Czech Academy of Sciences, v.v.i., Chaberská 57, 182 51 Prague, Czech Republic
  • Institute of Chemical Technology, Faculty of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic
autor
  • Institute of Photonics and Electronics of the Czech Academy of Sciences, v.v.i., Chaberská 57, 182 51 Prague, Czech Republic
autor
  • Czech Technical University in Prague, Faculty of Electrical Engineering, Technická 2, 166 27 Prague, Czech Republic
autor
  • Institute of Photonics and Electronics of the Czech Academy of Sciences, v.v.i., Chaberská 57, 182 51 Prague, Czech Republic
autor
  • Institute of Photonics and Electronics of the Czech Academy of Sciences, v.v.i., Chaberská 57, 182 51 Prague, Czech Republic
autor
  • Institute of Photonics and Electronics of the Czech Academy of Sciences, v.v.i., Chaberská 57, 182 51 Prague, Czech Republic
autor
  • Institute of Photonics and Electronics of the Czech Academy of Sciences, v.v.i., Chaberská 57, 182 51 Prague, Czech Republic
Bibliografia
  • 1. B. Jean and T. Bende, “Mid-IR laser applications in medicine”, in: Solid-State Mid-Infrared Laser Sources. pp. 530–565, Springer-Verlag, Berlin, 2003.
  • 2. M. Grasso, “Experience with the holmium laser as an endoscopic lithotrite”, Urology 48, 199–206 (1996).
  • 3. A. Sciarra, M. von Heland, F. Minisola, S. Salciccia, S. Cattarino, and V. Gentile, “Thulium laser supported nephron sparing surgery for renal cell carcinoma”, J. Urol. 190, 698–701 (2013).
  • 4. Z.Q. Zhao and P.W. Fairchild, “Dependence of light transmission through human skin on incident beam diameter at different wavelengths”, in Laser-Tissue Interaction IX, J. Lotz ; S.L. Jacques, Editors, Proc. SPIE 3254, 354–360 (1998).
  • 5. A.Z. Thomas, L. Smyth, D. Hennessey, F. O’Kelly, D. Moran, and T.H. Lynch, “Zero ischemia laparoscopic partial thulium laser nephrectomy”, J. Endourol. 27, 1366–1370 (2013).
  • 6. C.L. Tsai, J.C. Chen, and W.J. Wang, “Near-infrared absorption property of biological soft tissue constituents”, J. Med. Biol. Eng. 21, 7–14 (2001).
  • 7. J. Kwiatkowski, “Highly efficient high power CW and Q-switched Ho:YLFlaser”, Opto-Electron. Rev. 23, 165–171 (2015).
  • 8. J. Sotor, M. Pawliszewska, G. Sobon, P. Kaczmarek, A. Przewolka, I. Pasternak, J. Cajzl, P. Peterka, P. Honzatko, I. Kasik, W. Strupinski, and K. Abramski, “All-fibre Ho-doped mode-locked oscillator based on graphene saturable absorber”, Opt. Lett., 41, 2592–2595 (2016).
  • 9. L. Nagli, O. Gayer, and A. Katzir, “Middle-infrared luminescence of praseodymium ions in silver halide crystals and fibres”, Opt. Lett. 30, 1831–1833 (2005).
  • 10. D. Sliwinska, P. Kaczmarek, and K.M. Abramski, “Pump and signal power combiners for high-power fibre amplifier applications”, Photonics Lett. of Poland 7, 29–31 (2015).
  • 11. D. Stachowiak, P. Kaczmarek, and K. M. Abramski, “High-power pump combiners for Tm-doped fibre lasers”, Opto-Electron. Rev. 23, 259–267 (2015).
  • 12. P. Koška, Y. Baravets, P. Peterka, J. Bohata, and M. Pisarik, “Mode-field adapter for tapered-fibre-bundle signal and pump combiners”, Appl. Opt. 54, 751–756 (2015).
  • 13. J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Maze, “High power supercontinuum generation in fluoride fibres pumped by 2 μm pulses”, IEEE Photonics Technol. Lett. 26, 150–153 (2014)
  • 14. Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J.P. Wooler, N.V. Wheeler, A.M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M.N. Petrovich, S. Alam, D.J. Richardson, and R. Slavík,“High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region”, J. Lightwave Technol. 33, 1373–1379 (2015).
  • 15. P. Honzatko, Y. Baravets, F. Todorov, P. Peterka, and M. Becker, “Coherently combined 20 W at 2000 nm from a pair of thulium-doped fibre lasers”, Las. Phys. Lett. 10, 095104 (5pp) (2013).
  • 16. P. Peterka, P. Honzátko, I. Kašík, O. Podrazký, F. Todorov, J. Cajzl, P. Koška, Y. Baravets, J. Aubrecht, and J. Mrázek, “Thulium-doped fibres and fibre-optic components for fibre lasers at around 2 μm”, Fine Mechanics and Optics 60, 174–177 (2015).
  • 17. I. Kašík, P. Honzátko, P. Peterka, J. Mrázek, O. Podrazký, J. Aubrecht, J. Proboštová, J. Cajzl, and F. Todorov, “Special optical fibres – heart of thulium and holmium fibre lasers and amplifiers”, Fine Mechanics and Optics 60, 4–7 (2015). (IN CZECH)
  • 18. M. Písařík, P. Peterka, S. Zvánovec, Y. Baravets, F. Todorov, I. Kašík, and P. Honzátko, “Fused fibre components for “eye-safe” spectral region around 2 μm”, Opt. Quant. Electron. 46, 603–611 (2014).
  • 19. A.B. Seddon, “Mid-infrared(IR) – A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo”, Physica Status Solidi (B) 250, 1020–1027 (2013).
  • 20. K. Oh, A. Kilian, P.M. Weber, L. Reinhart, Q. Zhang, and T.F. Morse, “Broadband superfluorescente mission of the 3H4 3H6 transition in a Tm-doped multicomponent silicate fibre”, Opt. Lett. 19, 1131–1133 (1994).
  • 21. R.M. Percival, D. Szebesta, C.P. Seltzer, S.D. Perin, S.T. Davey, and M. Louka, “A 1.6-μm pumped 1.9-μm thulium-doped fluoride fibre laser and amplifier of very high efficiency”, IEEE J. Quantum Electron. 31, 489–493 (1995).
  • 22. A. Halder, M.C. Paul, S.W. Harun, S.M.M. Ali, N. Saidin, S.S.A. Damanhuri, H. Ahmad, S. Das, M. Pal, S.K. Bhadra, “1880-nm broadband ASE generation with bismuth-thulium co-doped fibre”, IEEE Photonics J. 4, 2176–2181 (2012).
  • 23. A. Halder, M.C. Paul, N.S. Shahabuddin, S.W. Harun, N. Saidin, S.S.A. Damanhuri, H. Ahmad, S. Das, M. Pal, S.K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad ytterbium-sensitized thulium-doped fibre”, IEEE Photonics Journal 4, 14–18 (2012).
  • 24. J. Zmojda, D. Dorosz, M. Kochanowicz, and J. Dorosz, “Active glasses as the luminescent sources of radiation for sensor applications”, Bull. Pol. Acad. Sci.-Tech. Sci. 62, 393–397 (2014).
  • 25. J. Zmojda, M. Kochanowicz, P. Miluski, J. Dorosz, J. Pisarska, W.A. Pisarski, and D. Dorosz, “Investigation of up-conversion luminescence in antimony–germanate double-clad two cores optical fibre co-doped with Yb3+/Tm3+ and Yb3+/Ho3+ ions”, J. Luminescence 170, 795–800 (2016).
  • 26. P. Honzatko, Y. Baravets, I. Kasik, and O. Podrazky, “Wideband thulium–holmium-doped fibre source with combined forward and backward amplified spontaneous emission at 1600–2300 nm spectral band”, Opt. Lett. 39, 3650–3653 (2014).
  • 27. J.M. Sousa, M. Melo, L.A. Ferreira, J.R. Salcedo, and M.O. Berendt, “Product design issues relating to rare-earth doped fibre ring lasers and superfluorescence sources”, Proc. SPIE 6102, 610223 (2006).
  • 28. I. Trifanov, P. Caldas, L. Neagu, R. Romero, M.O. Berendt, J.A.R. Salcedo, A.G. Podoleanu, and A.B. Lobo Ribeiro, “Combined Neodymium – Ytterbium-doped ASE fibre-optic source for optical coherence tomography applications”, IEEE Photonics Technol. Lett. 23, 21–23 (2011).
  • 29. P. Peterka, F. Todorov, I. Kasik, V. Matejec, O. Podrazky, L. Sasek, G. Mallmann, and R. Schmitt, “Wideband and high-power light sources for in-line interferometric diagnostics of laser structuring systems”, Proc. SPIE 8697, 869718 (2012).
  • 30. Q. Wang, J. Geng, T. Luo, and S. Jiang, “2 μm mode-locked fibre lasers [Invited]”, Proc. SPIE 8237, 82371N (2012).
  • 31. Y.H. Tsang, A.F. El-Sherif, and T.A. King, “ Broadband amplified spontaneous emission fibre source near 2 μm using resonant in-band pumping”, J. Modern Optics 52, 109–118 (2005).
  • 32. Y.H. Tsang, T.A. King, D.-K. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm”, J. Modern Optics 53, 991–1001 (2006).
  • 33. D.Y. Shen, L. Pearson, P. Wang, J.K. Sahu, and W.A. Clarkson, “Broadband Tm-doped superfluorescent fibre source with 11 W single-ended output power”, Opt. Express 16, 11021–11026 (2008).
  • 34. J. Liu and P. Wang, “High-power broadband Thulium-doped all-fibre superfluorescent source at 2 μm”, IEEE Photonics Technol. Lett. 25, 242–245 (2013).
  • 35. G.-Y. Yu, J. Chang, Q.-P. Wang, X.-Y. Zhang, Z. Liu, Q.-J. Huang, “A theoretical model of thulium-doped silica fibre’s ASE in the 1900nm waveband”, Optoelectron. Lett. 6, 45–47 (2010).
  • 36. M. Gorjan, T. North, and M. Rochette, “Model of the amplified spontaneous emission generation in thulium-doped silica fibres”, J. Opt. Soc. Am. B29, 2886–2890 (2012).
  • 37. P. Peterka, I. Kasik, A. Dhar, B. Dussardier, and W. Blanc, “Theoretical modelling of fibre laser at 810 nm based on thulium-doped silica fibres with enhanced 3H4 level lifetime”, Opt. Express 19, 2773–2781 (2011).
  • 38. P. Peterka, I. Kasik, V. Matejec, W. Blanc, B. Faure, B. Dussardier, G. Monnom and V. Kubecek, “Thulium-doped silica-based optical fibres for cladding-pumped fibre amplifiers”, Opt. Mat. 30, 174–176 (2007).
  • 39. P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers”, Opt. Quant. Electron. 36, 201–212 (2004).
  • 40. J. Chen, X. Zhu, and W. Sibbett, “Rate-equation studies of erbium-doped fibre lasers with common pump and laser energy bands”, J. Opt. Soc. Am. B9, 1876–1882 (1992).
  • 41. O. Podrazký, I. Kašík, M. Pospíšilová, and V. Matμjec, “Use of alumina nanoparticles for preparation of erbium-doped fibres”, IEEE Proc. 20th Annual Meeting of the IEE LEOS, pp. 246–247, Lake Buena Vista, Florida, 2007.
  • 42. D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibres using MCVD nanoparticle doping process”, Proc. SPIE 7580, 75802B, (2010).
  • 43. W. Blanc and B. Dussardier, “Formation and applications of nanoparticles in silica optical fibres”, J. Optics (India) 45, 247–254 (2016).
  • 44. I. Kasik, O. Podrazky, J. Mrazek, J. Cajzl, J. Aubrecht, J. Probostova, P. Peterka, P. Honzatko, and A. Dhar, “Erbium and Al2O3 nanocrystals-doped silica optical fibres”, Bull. Pol. Acad. Sci.-Tech. Sci. 62, 641–646 (2014).
  • 45. R. Paschotta, J. Nilsson, A.C. Tropper, and D.C. Hanna, “Efficient superfluorescent light sources with broad bandwidth,” IEEE J. of Selected Topics in Quantum Electronics 3, 1097–1099 (1997).
  • 46. P. Peterka, J. Maria, B. Dussardier, R. Slavik, P. Honzatko, and V. Kubecek, “Long-period fibre grating as wavelength selective element in double-clad Yb-doped fibre-ring lasers”, Laser Phys. Lett. 6, 732–736 (2009).
  • 47. P. Koška, P. Peterka, J. Aubrecht, O. Podrazký, F. Todorov, M. Becker, Y. Baravets, P. Honzátko, and I. Kašík, “Enhanced pump absorption efficiency incoiled and twisted double clad thulium-doped fibres”, Opt. Express 24, 102–107 (2016).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-903318b3-3088-405f-9347-10ddfafd5086
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.