PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the Condensed Phase Enthalpy of Formation of Nitroaromatic Compounds Using the Estimated Gas Phase Enthalpies of Formation by the PM3 and B3LYP Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new method is introduced to correlate the condensed phase enthalpies of formation of nitroaromatic compounds with their gas phase enthalpies of formation on the basis of the B3LYP/6-31G* and PM3 methods. For the B3LYP method, the condensed phase enthalpy of formation depends on the number of certain elements, nitro groups and aromatic rings. For the PM3 method the number of N=N or N≡N groups, and the presence or absence of three interconnected rings, in addition to some of the parameters mentioned above, are necessary in order to obtain a reliable correlation. For 72 nitroaromatic compounds, the calculated root mean square (rms) deviations of the condensed phase enthalpies of formation of nitroaromatic compounds using the B3LYP and PM3 methods are 63.63 and 32.17 kJ/mol, respectively. The results predicted on the basis of the PM3 method are compared with the best available experimental data.
Rocznik
Strony
143--156
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Chemistry Department, Payame Noor University, 19395-4697 Tehran, I. R. Iran
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr, P.O. Box 83145/115, I. R. Iran
autor
  • Chemistry Department, Payame Noor University, 19395-4697 Tehran, I. R. Iran
Bibliografia
  • [1] Agrawal J.P., High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley, Weinheim, 2010.
  • [2] Keshavarz M.H., in: Hazardous Materials: Types, Risks, and Control, Research Progress on Heats of Formation and Detonation of Energetic Compounds, Nova Science Publishers, Inc., 2011, pp. 339-359.
  • [3] Akutsu Y., Tahara Sh., Tamura M., Yoshida T., Calculations of Heats of Formation for Nitro Compounds by Semiempirical MO Methods and Molecular Mechanics, J. Energ. Mater., 2006, 9, 161-171.
  • [4] Chen C., Wu J.C., Correlations Between Theoretical and Experimental Determination of Heat of Formation of Certain Aromatic Nitro Compounds, J. Comp. Chem., 2001, 25, 117-124.
  • [5] Luis J., Ciller P., On the Use of AM1 and PM3 Methods on Energetic Compounds, Propellants Explos. Pyrotech., 1993, 18, 33-40.
  • [6] Rice B.M., Pai S.V., Hare J., Predicting Heat of Formation of Energetic Materials Using Quantum Mechanical Calculations, J. Combust. Flame, 1999, 118, 445-458.
  • [7] Byrd E.F.C., Rice B.M., Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations, J. Phys. Chem. A, 2006, 110, 1005-1013.
  • [8] Politzer P., Ma Y., Lane P., Concha M.C., Computational Prediction of Standard Gas, Liquid, and Solid-phase Heats of Formation and Heats of Vaporization and Sublimation, Int. J. Quantum Chem., 2005, 105, 341-347.
  • [9] Politzer P., Lane P., Murray J.S., Computational Characterization of a Potential Energetic Compound: 1,3,5,7-Tetranitro-2,4,6,8-tetraazacubane, Cent. Eur. J. Energ. Mater., 2011, 8, 39-52.
  • [10] Murray J.S., Politzer P., Statistical Analysis of the Molecular Surface Electrostatic Potential: an Approach to Describing Noncovalent Interactions in Condensed Phase, J. Mol. Struct. (Theochem), 1998, 425, 107-114.
  • [11] Murray J.S., Politzer P., Quantitative Treatment of Solute/Solvent Interactions, Elsevier, Amesterdam, 1994, pp. 243-289.
  • [12] Politzer P., Murray J.S., Grice M.E., DeSalvo M., Miller E., Calculation of Heats of Sublimation and Solid Phase Heats of Formation, Mol. Phys., 1997, 91, 923-928.
  • [13] Reid R.C., Prausnitz J.M., Poling B.E., The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, 1987, pp. 154-190.
  • [14] Salmon A., Dalmazone D., Prediction Enthalpy of Formation in the Solid State (at 298.15 K) Using Second-order Group Contributions – Part 2: Carbon-hydrogen, Carbon-hydrogen-oxygen, and Carbon-hydrogen-nitrogen-oxygen Compounds, J. Phys. Chem. Ref. Data, 2006, 36, 19-57.
  • [15] Keshavarz M.H., Improved Prediction of Heats of Sublimation of Energetic Compounds Using Their Molecular Structure, J. Hazard. Mater., 2010, 177, 648-659.
  • [16] Keshavarz M.H., Predicting Condensed Phase Heat
  • [17] Keshavarz M.H., Predicting Condensed Phase Heat of Formation of Nitroaromatic Compounds, J. Hazard. Mater., 2009, 169, 890-900.
  • [18] Frisch M.J.; Trucks G.W.; Schlegel H.B.; Scuseria G.E.; Robb M.A.; Cheeseman J.R.; Montgomery J.A.; Vreven T.; Kudin K.N.; Burant J.C.; Millam J.M.; Iyengar S.S.; Tomasi J.; Barone V.; Mennucci B.; Cossi M.; Scalmani G.; Rega N.; Petersson G.A.; Nakatsuji H.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Klene M.; Li X.; Knox J.E.; Hratchian H.P.; Cross J.B.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R.E.; Yazyev O.; Austin A.J.; Cammi R.; Pomelli C.; Ochterski J.W.; Ayala P.Y.; Morokuma K.; Voth G.A.; Salvador P.; Dannenberg J.J.; Zakrzewski V.G.; Dapprich S.; Daniels A.D.; Strain M.C.; Farkas O.; Malick D.K.; Rabuck A.D.; Raghavachari K.; Foresman J.B.; Ortiz J.V.; Cui Q.; Baboul A.G.; Clifford S.; Cioslowski J.; Stefanov B.B.; Liu G.; Liashenko A.; Piskorz P.; Komaromi I.; Martin R.L.; Fox D.J.; Keith T.; Laham M.A. A.-.; Peng C.Y.; Nanayakkara A.; Challacombe M.; Gill P.M.W.; Johnson B.; Chen W.; Wong M.W.; Gonzalez C.; GAUSSIAN 03, Pople, Gaussian, Inc., Pittsburgh, PA, 2003.
  • [19] Palm W.J., Introduction to Matlab for Engineers, McGraw-Hill, New York, 2005, pp. 328-394.
  • [20] NIST Standard Reference Data Base Number 69, which can be accessed electronically through the NIST Chemistry Web Book (http://webbook.nist.gov/chemistry/); references for individual molecules are given therein.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-902f1320-ab8c-424b-af1e-e45766e6aeff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.