PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of hazardous metal ions in the water with resonant MEMS biosensor frequency shift – concept and preliminary theoretical analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy metal ions (e.g. cadmium, chromium, copper, nickel, arsenic, lead, zinc) have significantly serious side effects on the human health. They can bind with proteins and enzymes, altering their activity, increasing neurotoxicity, generating reactive oxygen species (ROS), promote cellular stress and resulting in their damage. Furthermore, the size, shape and type of metal are important for considering nano- or microtoxicity. It then becomes clear that the levels of these metals in drinking water are an important issue. Herein, a new micro-mechanical sensor is proposed to detect and measure these hazardous metals. The sensor consists of a micro-beam inside a micro-container. The surface of the beam is coated with a specific protein that may bind heavy metals. The mass adsorbed is measured using the resonant frequency shift of the micro-beam. This frequency shift due to the admissible mass (which is considered acceptable for drinking water based on the World Health Organization (WHO) standard) of manganese (Mn), lead (Pb), copper (Cu) and cadmium (Cd) is investigated for the first, second and third mode, respectively. Additionally, the effects of micro-beam off-center positions inside the micro-container and the mass location and investigated.
Rocznik
Strony
529--537
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, Urmia University, Urmia, Iran
autor
  • Department of Geology, Lorestan University, Khorramabad, Iran
autor
  • Department of Mechanical Engineering, University of Guilan, Rasht, Iran
autor
  • Institute of Structural Engineering, Poznan University of Technology, Piotrowo 5 Street, 60-965 Poznan, Poland
autor
  • Department of Mathematics, Cankaya University, Ankara, Turkey
  • Institute of Space Sciences, Magurele, Romania
autor
  • Department of Mechanical Engineering, Urmia University, Urmia, Iran
Bibliografia
  • [1] E. Gallegos, A. Warren, E. Robles, E. Campoy, A. Calderon, M.G. Sainz, P. Bonilla, and O. Escolero, “The effects of wastewater irrigation on groundwater quality in Mexico”, Water Sci. Technol. 40 (2), 45–52 (1999).
  • [2] Molecular Biology and Toxicology and Metals, eds. P.K. Zalups, J. Koropatnick, Taylor & Francis, New York, 2000.
  • [3] A. Jang, Y.W. Seo, and P.L. Bishop, “The removal of heavy metals in urban runoff by sorption on mulch”, Environ. Pollut. 133, 117–128 (2005).
  • [4] M.F.M. Noh and I.E. Tothill, “Development and characterisation of disposable gold electrodes, and their use for lead (II) analysis”, Anal. Bioanal. Chem. 386, 2095–2106 (2006).
  • [5] M.P. Waalkes, M. Anver, and B.A. Diwan, “Repeated cadmium exposures enhance the malignant progression of ensuing tumors in rats”, Toxicol. Sci. 52, 154–161 (1999).
  • [6] D.G. Bostwick, H.B. Burke, D. Djakiew, S. Euling, S.M. Ho, J. Landolph, H. Morrison, B. Sonawane, T. Shifflett, D.J. Waters, and B. Timms, “Human prostate cancer risk factors”, Cancer: Cancer News 101 (S10), 2371–2490 (2004).
  • [7] World Health Organization, Guidelines for drinking-water quality: first addendum to the fourth edition, 2017.
  • [8] T. Daşbaşı, Ş. Saçmacı, A. Ülgen, and Ş. Kartal, “A solid phase extraction procedure for the determination of Cd (II) and Pb (II) ions in food and water samples by flame atomic adsorption spectrometry”, Food Chem. 174, 591–596 (2015).
  • [9] L.G. Danielsson, B. Magnusson, and S. Westerlund, “An improved metal extraction procedure for the determination of trace metals in sea water by atomic adsorption spectrometry with electrothermal atomization”, Anal. Chim. Acta 98 (1), 47–57 (1978).
  • [10] M. Faraji, Y. Yamini, A. Saleh, M. Rezaee, M. Ghambarian, and R. Hassani, “A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasmaoptical emission spectrometry to determine some heavy metalions in water samples”, Anal. Chim. Acta 659 (1-2), 172–177 (2010).
  • [11] L. Zhao, S. Zhong, K. Fang, Z. Qian, and J. Chen, “Determination of cadmium (II), cobalt (II), nickel (II), lead (II), zinc (II), and copper (II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry”, J. Hazard. Mater. 239, 206–212 (2012).
  • [12] Z. Chen, Z. Peng, J. Jiang, X. Zhang, G. Shen, and R. Yu, “An electrochemical amplification immunoassay using biocatalytic metal deposition coupled with anodic stripping voltammetric detection”, Sens. Actuators B: Chem. 129, 146–151 (2008).
  • [13] W. Hu, H. Cai, J. Fu, P.Wang, and G. Yang, “Line-scanning LAPS array for measurement of heavy metal ions with microlens array based on MEMS”, Sens. Actuators B Chem. 129, 397–403 (2008).
  • [14] S. Roy, A. Prasad, R. Tevatia, and R.F. Saraf, “Heavy metal ion detection on a microspot electrode using an optical electrochemical probe”, Electrochem. Commun. 86, 94–98 (2018).
  • [15] A. Waheed, M. Mansha, and N. Ullah, “Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction”, Trac-Trends Anal. Chem. 105, 37–51 (2018).
  • [16] A. Moutcine and A. Chtaini, “Electrochemical determination of trace mercury in water sample using EDTA-CPE modified electrode”, Sensing and bio-sensing research 17, 30–35 (2018).
  • [17] J. Chouler, M.D. Monti, W.J. Morgan, P.J. Cameron, and M. Di Lorenzo, “A photosynthetic toxicity biosensor for water”, Electrochim. Acta 309, 392–401 (2019).
  • [18] P.S. Samendra, K. Masaaki, P.G. Charles, and L.P. Ian, “Rapid detection technologies for monitoring microorganisms in water”, Biosens. J. 3 (109), 2 (2014).
  • [19] Y. Arntz, J.D. Seelig, H.P. Lang, J. Zhang, P. Hunziker, J.P. Ramseyer, E. Meyer, M. Hegner, and Ch. Gerber, “Label-free protein assay based on a nanomechanical cantilever array”, Nanotechnology 14 (1), 86 (2002).
  • [20] G.E. Fantner, W. Schumann, R.J. Barbero, A. Deutschinger, V. Todorov, D.S. Gray, A.M. Belcher, I.W. Rangelow, and K. Youcef-Toumi. “Use of self-actuating and self-sensing cantilevers for imaging biological samples in fluid”, Nanotechnology 20 (43) (2009).
  • [21] W. Zhang, and K.L. Turner, “Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor”, Sens. Actuators, A. 122 (1), 23–30 (2005).
  • [22] P.S. Waggoner, and H.G. Craighead, “Micro-and nanomechanical sensors for environmental, chemical, and biological detection”, Lab Chip 7 (10), 1238–1255 (2007).
  • [23] B. Ilic, D. Czaplewski, M. Zalalutdinov, H.G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Single cell detection with micromechanical oscillators”, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 19 (6), 2825–2828 (2001).
  • [24] P. Enoksson, G. Stemme, and E. Stemme, “A silicon resonant sensor structure for Coriolis mass-flow measurements”, J. Microelectromech. Syst. 6(2), 119–125 (1997).
  • [25] K. Park, N. Kim, D.T. Morisette, N.R. Aluru, and R. Bashir, “Resonant MEMS mass sensors for measurement of microdroplet evaporation”, J. Microelectromech. Syst. 21 (3), 702–711 (2012).
  • [26] S. Walczak, and M. Sibiński, “Flexible, textronic temperature sensors, based on carbon nanostructures”, Bull. Pol. Acad. Sci.: Tech. Sci. 62 (4), 759–763 (2014).
  • [27] W.P. Jakubik, M. Urbańczyk, E. Maciak, and T. Pustelny, “Surface acoustic wave hydrogen gas sensor based on layered structure of palladium/metal-free phthalocyanine”, Bull. Pol. Acad. Sci.: Tech. Sci. 56 (2), 133–138 (2008).
  • [28] A. Odabasic, I. Sestan, and S. Begic, “Biosensors for Determination of Heavy Metals in Waters”, in Environmental Biosensors, 2019.
  • [29] K. Eom, H.S. Park, D.S. Yoon, and T. Kwon, “Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles”, Phys. Rep. 503 (4-5), 115–163 (2011).
  • [30] A. Gupta, D. Akin, and R. Bashir, “Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators”, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 22 (6), 2785–2791 (2004).
  • [31] A. Gupta, D. Akin and R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness”, Appl. Phys. Lett. 84 (11), 1976–1978 (2004).
  • [32] K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J.P. Robinson, M. Toner, and R. Bashir, “Living cantilever arrays’ for characterization of mass of single live cells in fluids”, Lab Chip 8 (7), 1034–1041 (2008).
  • [33] G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M.F. Hagan, A.K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions”, Proc. Natl. Acad. Sci. 98 (4), 1560–1564 (2001).
  • [34] G. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers”, Nat. Biotechnol. 19 (9), 856 (2001).
  • [35] R.K. Gupta, S.V. Dobritsa, C.A. Stiles, M.E. Essington, Z. Liu, C.H. Chen, E.H. Serpersu and B.C. Mullin, “Metallohistins: A new class of plant metal-binding proteins”, J. Protein Chem. 21 (8), 529–536 (2002).
  • [36] N. Verma and M. Singh, “Biosensors for heavy metals”, BioMetals 18, 121–129 (2005).
  • [37] G.L. Turdean, “Design and Development of Biosensors for the Detection of Heavy Metal Toxicity”, Int. J. Electrochem. 2011, 343125 (2011).
  • [38] G. Aragay, J. Pons, and A. Merkoçi, “Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavymetal detection”, Chem. Rev. 111 (5), 3433–3458 (2011).
  • [39] T. Braun, V. Barwich, M.K. Ghatkesar, A.H. Bredekamp, C. Gerber, M. Hegner, and H.P. Lang, “Micromechanical mass sensors for biomolecular detection in a physiological environment”, Phys. Rev. E 72 (3), 031907 (2005).
  • [40] M. Hara, D. Kashima, T. Horiike, and T. Kuboi, “Metal-binding characteristics of the protein which shows the highest histidine content in the Arabidopsis genome”, Plant Biotechnol. J. 27(5), 475–480 (2010).
  • [41] O.A. Kapustina, “Degassing of liquids”, Physical Principles of Ultrasonic Technology, IV, 422–427 (1970).
  • [42] C. Suman, R.K. Gupta, B.C. Mullin, and T. Thundat, “Detection of heavy metal ions using protein-functionalized microcantilever sensors”, Biosens. Bioelectron. 19 (5), 411–416 (2003).
  • [43] J. Friend and L. Yeo, “Using laser Doppler vibrometry to measure capillary surface waves on fluid-fluid interfaces”, Biomicrofluidics 4 (2), 026501 (2010).
  • [44] R. Longo, S. Vanlanduit, G. Arroud, and P. Guillaume, ”Underwater acoustic wavefront visualization by scanning laser Doppler vibrometer for the characterization of focused ultrasonic transducers”, Sensors 15 (8), 19925–19936 (2015).
  • [45] B. Bhushan, H. Fuchs, and S. Hosaka, Applied Scanning Probe Methods I, Springer Science & Business Media, 2014.
  • [46] R. Shabani, H. Hatami, F.G. Golzar, S. Tariverdilo, and G. Rezazadeh, “Coupled vibration of a cantilever micro-beam submerged in a bounded incompressible fluid domain”, Acta Mechanica 224 (4), 841–850 (2013).
  • [47] A. Bouchaala, A.H. Nayfeh, and M.I. Younis, “Analytical study of the frequency shifts of micro and nano clamped–clamped beam resonators due to an added mass”, Meccanica 52 (1-2), 333–348 (2017).
  • [48] Z. Rahimi, G. Rezazadeh, W. Sumelka, and X.J. Yang, “A study of critical point instability of micro and nano beams under a distributed variable-pressure force in the framework of the inhomogeneous non-linear nonlocal theory”, Arch. Mech. 69 (6), 413–433 (2017).
  • [49] K. Ivaz, D. Abdollahi, and R. Shabani, “Analyzing Free Vibration of a Cantilever Microbeam Submerged in Fluid with Free Boundary Approach”, J. Appl. Fluid Mech. 10 (6), 1593–1603 (2017).
  • [50] N. Sharafkhani, R. Shabani, S. Tariverdilo, and G. Rezazadeh, “Stability analysis and transient response of electrostatically actuated microbeam interacting with bounded compressible fluids”, J. Appl. Mech. 80 (1), 011024 (2013).
  • [51] Z. Rahimi, G. Rezazadeh, and H. Sadeghian, ”Study on the size dependent effective Young modulus by EPI method based on modified couple stress theory”, Microsyst. Technol. 24, 2983–2989 (2018).
  • [52] Z. Rahimi, G. Rezazadeh, and W. Sumelka, “A non-local fractional stress–strain gradient theory”, Int. J. Mech. Mater. Des. 16, 265–278 (2020).
  • [53] S.S. Rao, Mechanical Vibration, Prentice Hall, Pearson Education South Asia Pte Ltd., 2005.
  • [54] M. Marco, R. Battaglia, G. Ferrini, R. Puglisi, D. Balduzzi, and A. Galli, “Single microparticles mass measurement using an AFM cantilever resonator”, arXiv preprint arXiv:1410.1953, (2014).
  • [55] C.C. Liang, C.C. Liao, Y.S. Tai, and W.H. Lai, “The free vibration analysis of submerged cantilever plates”, Ocean Eng. 28 (9), 1225–1245 (2001).
  • [56] Y. Zhang and Y.P. Zhao, “Mass and force sensing of an adsorbate on a beam resonator sensor”, Sensors 15(7), 14871–14886 (2015).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-902ef02a-f7d9-4737-b903-f332b806bd38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.