PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The system of headlights operation recognition using the digital twin method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Virtual digital representation of a physical object or system, created with precision through computer simulations, data analysis, and various digital technologies can be used as training set for real life situations. The principal aim behind creating a virtual representation is to furnish a dynamic, data-fueled, and digital doppelgänger of the physical asset. This digital counterpart serves multifaceted purposes, including the optimization of performance, the continuous monitoring of its well-being, and the augmentation of informed decision-making processes. Main advantage of employing a digital twin is its capacity to facilitate experimentation and assessment of diverse scenarios and conditions, all without impinging upon the actual physical entity. This capability translates into substantial cost savings and superior outcomes, as it allows for the early identification and mitigation of issues before they escalate into significant problems in the tangible world. Within our research endeavors, we've meticulously constructed a digital twin utilizing the Unity3D software. This digital replica faithfully mimics vehicles, complete with functioning headlamp toggles. Our lighting system employs polygons and normal vectors, strategically harnessed to generate an array of dispersed and reflected light effects. To ensure realism, we've meticulously prepared the scene to emulate authentic road conditions. For validation and testing, we integrated our model with the YOLO (You Only Look Once) neural network. A specifically trained compact YOLO model demonstrated impressive capabilities by accurately discerning the status of real vehicle headlamps. On average, it achieved an impressive recognition probability of 80%, affirming the robustness of our digital twin.
Rocznik
Strony
51--58
Opis fizyczny
Bibliogr. 19 poz., fot., rys., wykr.
Twórcy
  • WSB University, Department of Transport and Computer Science, Poland
  • WSB University, Department of Transport and Computer Science, Poland
Bibliografia
  • [1] Home | NHTSA, https://www.nhtsa.gov/, last accessed 2023/01/17.
  • [2] AAA | American Automobile Association, https://www.ace.aaa.com/, last ac-cessed 2023/01/17.
  • [3] Z. Sun, G. Bebis, and R. Miller,"On-road vehicle detection: a review", IEEE Trans. Pattern Anal. Mach. Intell., vol 28, pp. 694-71, 2006. doi:10.1109/TPAMI.2006.104
  • [4] A. Mukhtar, L. Xia, and T. Boon Tang, "Vehicle Detection Techniques for Collision Avoidance Systems: A Review", IEEE Trans. Intell. Transp. Syst. Vol 16, pp. 2318–2338, 2015. doi:10.1109/TITS.2015.2409109
  • [5] A. Dawid, "PSR-based research of feature extraction from one-second EEG signals: a neural network study", SN Appl. Sci., vol. 1, article number 1536, 2019. doi:10.1007/s42452-019-1579-9
  • [6] A. Bhattacharyya, M. Sharma, R. B. Pachori, P. Sircar, and U. R. Acharya, "A novel approach for automated detection of focal EEG signals using empirical wavelet transform.", Neural Comput. Appl., vol. 29, pp. 47-57, 2018. doi:10.1007/s00521-016-2646-4
  • [7] E.S. Madhan, S. Neelakandan, R. Annamalai, R., “A Novel Approach for Vehicle Type Classification and Speed Prediction Using Deep Learning.”, J. Comput. Theor. Nanosci. vol. 17, pp. 2237-2242, 2020. doi:10.1166/jctn.2020.8877
  • [8] A. Dawid, P. Buchwald, B. Pawlak, "The Digital Twin to Train a Neural Network Detecting Headlamps Failure of Motor Vehicles", In: W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, J. Kacprzyk (eds) Dependable Computer Systems and Networks. DepCoS-RELCOMEX 2023. Lecture Notes in Networks and Systems. Springer, Cham., vol 737, pp. 29-38, 2023. doi:10.1007/978-3-031-37720-4_3
  • [9] Regulation No 48 of the Economic Commission for Europe of the United Nations (UNECE) - Uniform provisions concerning the approval of vehicles with regard to the installation of lighting and light-signalling devices [2019/57].
  • [10] Y. Kim, H. Gwak, J. Oh, M. Kang., J. Kim, H. Kwon, and S. Kim, “CloudNet: A LiDAR-Based Face Anti-Spoofing Model That Is Robust Against Light Variation.” IEEE Access. vol. 11, pp. 16984-16993, 2023. doi:10.1109/ACCESS.2023.3242654.
  • [11] D. Palka, M. Sobota, P. Buchwald, "3D Object Digitization Devices in Manufacturing Engineering Applications and Services.", Multidiscip. Asp. Prod. Eng., vol. 3, pp. 450-463, 2020. doi:10.2478/mape-2020-0038
  • [12] C-Y Wang, A. Bochkovskiy, and Hong-Yuan Mark Liao, "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors", http://arxiv.org/abs/2207.02696, 2022. doi:10.48550/arXiv.2207.02696
  • [13] C. Goutte, E. Gaussier, "A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation", In: Losada, D.E. and Fernández-Luna, J.M. (eds.) Advances in Information Retrieval.. Springer, Berlin, Heidelberg, pp. 345–359, (2005). doi:10.1007/978-3-540-31865-1_25
  • [14] K. Szyc, "An Impact of Data Augmentation Techniques on the Robustness of CNNs", In: W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, (eds.) “New Advances in Dependability of Networks and Systems.”, Springer International Publishing, Cham, pp. 331-339, 2022. doi:10.1007/978-3-031-06746-4_32
  • [15] C. Shorten and T. M. Khoshgoftaar, "A survey on Image Data Augmentation for Deep Learning", J. Big Data., vol 6, article number 60, 2019. doi:10.1186/s40537-019-0197-0
  • [16] A. Pilch and H. Maciejewski, "Labeling Quality Problem for Large-Scale Image Recognition", In: W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, (eds.) “New Advances in Dependability of Networks and Systems.”, Springer International Publishing, Cham, pp. 206-216, 2022. doi:10.1007/978-3-031-06746-4_20
  • [17] K. Szyc, "Determining the Minimal Number of Images Required to Effectively Train Convolutional Neural Networks". In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds) Theory and Applications of Dependable Computer Systems. DepCoS-RELCOMEX 2020. Advances in Intelligent Systems and Computing, Springer, Cham. vol 1173. pp 652-661, 2022, doi:10.1007/978-3-030-48256-5_64
  • [18] A. Rusiecki, "Standard Dropout as Remedy for Training Deep Neural Networks with Label Noise.", In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds) Theory and Applications of Dependable Computer Systems. DepCoS-RELCOMEX 2020. Advances in Intelligent Systems and Computing, Springer, Cham. Vol 1173, pp. 534-542, 2020. doi:10.1007/978-3-030-48256-5_52
  • [19] J. Mazurkiewicz and A. Cybulska, (2020). Softcomputing Art Style Identification System. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds) Engineering in Dependability of Computer Systems and Networks. DepCoS-RELCOMEX 2019. Advances in Intelligent Systems and Computing, Springer, Cham., vol. 987., pp 321–330, 2019, doi:10.1007/978-3-030-19501-4_32
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-902b257f-97e8-4416-a79a-fe350c4c13ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.