Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of a simulation on a 3D model of undeformed chips and cutting forces during three-pass gear cutting using the power skiving method. At the level of individual blades and teeth in successive angular cutting positions, the main component of the cutting force and the tangential force on the cutter axis are shown. The analysis of the forces acting on a single gear tooth and the continuous cutting forces allowed the development of a methodology for the selection of rationalcutting modes – the value of the axial feed, the number of passes with different cutting depths in order to ensure the minimum time consumption and to achieve the required accuracy of the gears in terms of the parameter of the permissible angular deviation of the profile of the cut gear. It is shown that, provided the required machining accuracy is ensured, higher productivity is achieved by increasing the axial feed at a lower depth of cut and increasing the number of passes, rather than by reducing the feed and increasing the depth of cut.
Wydawca
Czasopismo
Rocznik
Tom
Strony
213--226
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Lviv Polytechnic National University, Lviv, Ukraine
autor
- Lviv Polytechnic National University, Lviv, Ukraine
Bibliografia
- [1] F. Klocke, C. Brecher, C. Löpenhaus, P. Ganser, J. Staudt, and M. Krömer. Technological and Simulative Analysis of Power Skiving. Procedia CIRP, 50:773–778, 2016. doi: 10.1016/j.procir.2016.05.052.
- [2] H.J. Stadtfeld. Power skiving of cylindrical gears on different machine platforms. Gear Technology. 2014(1):52–62, 2014.
- [3] B. Vargas, M. Zapf, J. Klose, F. Zanger, and V. Schulze. Numerical modelling of cutting forces in gear skiving. Procedia CIRP, 82:455–460, 2019. doi: 10.1016/j.procir.2019.04.039.
- [4] H. Onozuka, F. Tayama, Y. Huangb, M. Inuib. Cutting force model for power skiving of internal gear. Journal of Manufacturing Processes, 56(B):1277–1285, 2020. doi: 10.1016/j.jmapro. 2020.04.022.
- [5] M. Inuia, Y. Huang, H. Onozuka, and N. Umezu. Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation. Procedia Manufacturing, 48:520–527, 2020. doi: .
- [6] N. Tapoglou. Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation. The International Journal of Advanced Manufacturing Technology, 100(5-8):1779–1785, 2019. doi: 10.1007/s00170-018-2790-3.
- [7] P. McCloskey, A. Katz, L. Berglind, K. Erkorkmaz, E. Ozturk, and F. Ismail. Chip geometry and cutting forces in gear power skiving. CIRP Annals, 68(1):109–112, 2019. doi: 10.1016/j.cirp.2019.04.085.
- [8] A. Antoniadis. Gear skiving—CAD simulation approach. Computer-Aided Design, 44(7):611– 616, 2012. doi: 10.1016/j.cad.2012.02.003.
- [9] A. Antoniadis, N. Vidakis, and N. Bilalis. A simulation model of gear skiving. Journal of Ma- terials Processing Technology, 146(2):213–220, 2004. doi: 10.1016/j.jmatprotec.2003.10.019.
- [10] T. Bergs, A. Georgoussis, and C. Löpenhaus. Development of a numerical simulation method for gear skiving. Procedia CIRP, 88:352–357, 2020. doi: 10.1016/j.procir.2020.05.061.
- [11] https://www.youtube.com/watch?v=0C4hFSeGryM.
- [12] T. Nishikawa, S. Shimada, G. Kobayashi, Z. Ren, and N. Sugita. Using power skiving to increase the efficiency and precision of internal gear cutting. Komatsu Technical Report, 64(171):1–7, 2018.
- [13] C. Janßen, J. Brimmers, and V. Bergs. Validation of the plane-based penetration calculation for gear skiving. Procedia CIRP, 99:220–225, 2021. doi: 10.1016/j.procir.2021.03.034.
- [14] C.Y. Tsai and P.D. Lin. Gear manufacturing using power-skiving method on six-axis CNC turn-mill machining center. The International Journal of Advanced Manufacturing Technology, 95:609–623, 2018. doi: 10.1007/s00170-017-1154-8.
- [15] V. Schulze, C. Kühlewein, and H. Autenrieth. 3D-FEM modeling of gear skiving to investigate kinematics and chip formation mechanisms. Advanced Materials Research, 223:46–55, 2011. doi: 10.4028/www.scientific.net/AMR.223.46.
- [16] E. Guo, R. Hong, X. Huang, and C. Fang. Research on the cutting mechanism of cylindrical gear power skiving. The International Journal of Advanced Manufacturing Technology, 79:541–550, 2015. doi: 10.1007/s00170-015-6816-9.
- [17] T. Luu and Y. Wu. A novel correction method to attain even grinding allowance in CNC gear skiving process. Mechanism and Machine Theory. 171:104771, 2022. doi: 10.1016/j.mech machtheory.2022.104771.
- [18] C.Y. Tsai. Power-skiving tool design method for interference-free involute internal gear cutting. Mechanism and Machine Theory, 164:104396. 2021. doi: 10.1016/j.mechmachtheory. 2021.104396.
- [19] I. Hrytsay, V. Stupnytskyy, and V. Topchii. Improved method of gear hobbing computer- aided simulation. Archive of Mechanical Engineering, 66(4):475–494, 2019. doi: 10.24425/ame.2019.131358.
- [20] I. Hrytsay, V. Stupnytskyy, A. Slipchuk, and J. Ziobro. Load parameters of the gear machining by power skiving and their influence on the machining system. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes V. In- terPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. doi: 10.1007/ 978-3-031-42778-7_15.
- [21] V. Stupnytskyy. Features of functionally-oriented engineering technologies in concurrent en- vironment.International Journal of Engineering Research & Technology (IJERT), 2(9):1181–1186, 2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9024a0f8-cd4b-4f36-8421-3385c494fe33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.