PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of intermediate principal stress on the stability of slopes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The intermediate principal stress (𝜎2 ) effect is a mechanical property inherent in many rock and soil materials. However, the effect of 𝜎2 is often ignored in slope stability analyses, and its impact on slope stability is seldom investigated. The primary purpose of this study is to thoroughly investigate the impact of the 𝜎2 effect on slope stability via numerical method. A detailed numerical analysis using the Finite Difference Code Fast Lagrangian Analysis of Continua (FLAC) and Unified Strength Theory (UST) is conducted. The numerical analysis evaluates the values of the Factor of Safety (FOS) for two types of slopes (plane strain and axisymmetric) using the Strength Reduction Method (SRM), and the impact of the 𝜎2 effect on slope stability is analysed. The study found that the influence of the 𝜎2 effect on slope stability is not sensitive to the values of friction angle ϕ, cohesion c, and slope height H, but increases with increasing slope angle β values. Furthermore, the stability of the plane strain slope is more affected by the 𝜎2 effect than the axisymmetric slope. The impact of the 𝜎2 effect on the footing capacity and slope stability were compared, and the impact of the 𝜎2 effect on slope stability is significantly lower than its effect on the bearing capacity of footings. The innovation of this paper is to systematically analyse the effect of 𝜎2 on slope with different geometric shapes and soil parameters and reveal the inherent characteristics of 𝜎2 effect on the stability of soil slope.
Słowa kluczowe
Rocznik
Strony
83--96
Opis fizyczny
Bibliogr. 38 poz., il., tab.
Twórcy
autor
  • Guizhou Communications Polytechnic University, Guizhou Engineering Research Center of Road Inspection, Monitoring and Maintenance Technology, Guiyang, P. R. China
autor
  • Guizhou Communications Polytechnic University, Guizhou Engineering Research Center of Road Inspection, Monitoring and Maintenance Technology, Guiyang, P. R. China
Bibliografia
  • [1] K. Mogi, “Effect of the triaxial stress system on the failure of dolomite and limestone”, Tectonophysics, vol. 11, no. 2, pp. 111-127, 1971, doi: 10.1016/0040-1951(71)90059-X.
  • [2] M.Q. You, “True-triaxial strength criteria for rock”, International Journal of Rock Mechanics and Mining Sciences, vol. 46, no. 1, pp. 115-127, 2009, doi: 10.1016/j.ijrmms.2008.05.008.
  • [3] H.B. Sutherland and M.S. Mesdary, “The influence of the intermediate principal stress on the strength of sand”, in Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, vol. 1, 1969, pp. 391-399. [Online]. Availabe: https://www.issmge.org/publications/publication/the-influence-ofthe-intermediate-principal-stress-on-the-strength-of-sand.
  • [4] P.V. Lade, “Assessment of Test Data for Selection of 3-D Failure Criterion for Sand”, International Journal for Numerical and Analytical Methods in Geomechanics, vol. 30, no. 4, pp. 307-333, 2006, doi: 10.1002/nag.471.
  • [5] D.H. Cornforth, “Some experiments on the influence of strain conditions on the strength of sand”, Geotechnique, vol. 14, no. 2, pp. 143-167, 1964, doi: 10.1680/geot.1964.14.2.143.
  • [6] O.C. Zienkiewicz and G.N. Pande, “Some useful forms of isotropic yield surfaces for soil and rock mechanics”, in Finite elements in geomechanics, G. Gudehus, Ed. New York: Wiley, 1977, pp. 179-190.
  • [7] P.V. Lade, “Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces”, International Journal of Solids and Structures, vol. 13, no. 11, pp. 1019-1035, 1977, doi: 10.1016/0020-7683(77)90073-7.
  • [8] H. Matsuoka and T. Nakai, “Relationship among Tresca, Mises, Mohr-Coulomb and Matsuoka-Nakai failure criteria”, Soils and Foundations, vol. 25, no. 4, pp. 123-128, 1985.
  • [9] M.H. Yu, Unified strength theory and its applications. Berlin, Germany: Springer, 2004.
  • [10] H. Matsuoka and T. Nakai, “Stress-deformation and strength characteristics of soil under three different principal stresses”, Proceedings of the Japan Society of Civil Engineers, Japan Society of Civil Engineers, vol. 1974, no. 232, pp. 59-70, 1974, doi: 10.2208/JSCEJ1969.1974.232_59.
  • [11] M. Cai, “Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries - Insight from numerical modeling”, International Journal of Rock Mechanics and Mining Sciences, vol. 45, no. 5, pp. 763-772, 2008, doi: 10.1016/j.ijrmms.2007.07.026.
  • [12] Z.Y. Ma, H.J. Liao, and F.N. Dang, “Influence of intermediate principal stress on the bearing capacity of strip and circular footings”, Journal of Engineering Mechanics ASCE, vol. 140, no. 7, pp. 1-14, 2014.
  • [13] Z.Y. Ma, F.N. Dang, and H.J. Liao, “Numerical study of the dynamic compaction of gravel soil ground using the discrete element method”, Granular Matter, vol. 16, no. 6, pp. 881-889, 2014, doi: 10.1007/s10035-014-0529-x.
  • [14] Z.Y. Ma, H.J. Liao, F.N. Dang, and Y.X. Cheng, “Seismic slope stability and failure process analysis using explicit finite element method”, Bulletin of Engineering Geology and the Environment, vol. 80, pp. 1287-1301, 2021, doi: 10.1007/s10064-020-01989-3.
  • [15] A.W. Bishop, “The use of the slip circle in the stability analysis of slopes”, Geotechnique, vol. 5, no. 1, pp. 7-17, 1955, doi: 10.1680/geot.1955.5.1.7.
  • [16] A.W. Bishop and N. Morgenstern, “Stability coefficients for earth slopes”, Geotechnique, vol. 10, no. 4, pp. 129-153, 1960, doi: 10.1680/geot.1960.10.4.129.
  • [17] E. Spencer, “A method of analysis of stability of embankments assuming parallel interslice forces”, Geotechnique, vol. 17, no. 1, pp. 11-26, 1967, doi: 10.1680/geot.1967.17.1.11.
  • [18] N.L. Janbu, “Application of composite slip surfaces for stability analysis”, in Proceedings European Conference on Stability of Earth Slopes. Stockholm, 1954, vol. 3, pp. 43-49.
  • [19] N.R. Morgenstern and V.E. Price, “The Analysis of the Stability of General Slip Surfaces”, Geotechnique, vol. 15, no. 1, pp. 79-93, 1965, doi: 10.1680/geot.1965.15.1.79.
  • [20] S.K. Sarma, “Stability Analysis of Embankment and Slopes”, Journal of Geotechnical Engineering Division ASCE, vol. 105, no. 12, pp. 1511-1524, 1979, doi: 10.1061/AJGEB6.0000903.
  • [21] D.G. Fredlund and J. Krahn, “Comparison of slope stability methods of analysis”, Canadian Geotechnical Journal, vol. 14, no. 3, pp. 429-439, 1977, doi: 10.1139/t77-045.
  • [22] A.J. Li, R.S. Merifield, and A.V. Lyamin, “Limit analysis solutions for three dimensional undrained slopes”, Computers and Geotechnics, vol. 36, no. 8, pp. 1330-1351, 2009, doi: 10.1016/j.compgeo.2009.06.002.
  • [23] L. Wang, D. Sun, and L. Lin, “Three-dimensional stability of compound slope using limit analysis method”, Canadian Geotechnical Journal, vol. 56, no. 1, pp. 116-125, 2019, doi: 10.1139/cgj-2017-0345.
  • [24] X.G. Yang and S.C. Chi, “Upper bound finite element analysis of slope stability using a nonlinear failure criterion”, Computers and Geotechnics, vol. 54, pp. 185-191, 2013, doi: 10.1016/j.compgeo.2013.06.007.
  • [25] O.C. Zienkiewicz, C. Humpheson, and R.W. Lewis, “Associated and non-associated visco-plasticity and plasticity in soil mechanics”, Geotechnique, vol. 25, no. 4, pp. 671-689, 1975, doi: 10.1680/geot.1975.25.4.671.
  • [26] J.M. Duncan, “State of the art: Limit equilibrium and finite-element analysis of slopes”, Journal of Geotechnical Engineering ASCE, vol. 122, no. 7, pp. 577-596, 1996, doi: 10.1061/(ASCE)0733-9410(1996)122:7(577).
  • [27] E.M. Dawson, W.H. Roth, and A. Drescher, “Slope stability analysis by strength reduction”, Geotechnique, vol. 49, no. 6, pp. 835-840, 1999, doi: 10.1680/geot.1999.49.6.835.
  • [28] Y.M. Cheng, T. Lansivaara, and W.B. Wei, “Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods”, Computers and Geotechnics, vol. 34, no. 3, pp. 137-150, 2007, doi: 10.1016/j.compgeo.2006.10.011.
  • [29] C.C. Swan and Y.K. Seo, “Limit state analysis of earthen slopes using dual continuum/FEM approaches”, International Journal for Numerical and Analytical Methods in Geomechanics, vol. 23, no. 12, pp. 1359-1371, 1999, doi: 10.1002/(SICI)1096-9853(199910)23:12<1359::AID-NAG39>3.0.CO;2-Y.
  • [30] D.V. Griffiths and P.A. Lane, “Slope stability analysis by finite elements”, Geotechnique, vol. 49, no. 3, pp. 387-403, 1999, doi: 10.1680/geot.1999.49.3.387.
  • [31] The research described in this paper was funded by Guizhou Science & Technology Cooperation Platform Talent-CXTD[2021]008, and the major scientific and technological research project of Guizhou Provincial Department of Transport (2022-122-020, 2023-122-001). The authors would like to thank the reviewers for their comments and suggestions, which permit the improvement of this manuscript. D. Park, “Infinite rock slope analysis with Hoek-Brown failure criterion”, Rock Mechanics and Rock Engineering. vol. 56, pp. 6919-6928, 2023, doi: 10.1007/s00603-023-03431-y.
  • [32] C.W. Sun, J.R. Chai, T. Luo, Z. Xu, X. Chen, Y. Qin, and B. Ma, “Nonlinear shear-strength reduction technique for stability analysis of uniform cohesive slopes with a general nonlinear failure criterion”, International Journal of Geomechanics, vol. 21, no. 1, pp. 1-10, 2020, doi: 10.1061/(ASCE)GM.1943-5622.0001885.
  • [33] Z. Y. Ma, H. J. Liao, and M. H. Yu, “Slope Stability Analysis Using Unified Strength Theory”, Applied Mechanics & Materials, vol. 137, pp. 59-64, 2011, doi: 10.4028/www.scientific.net/AMM.137.59.
  • [34] Itasca Consulting Group, FLAC-Fast lagrangian analysis of continua, User’s manual. Minneapolis, USA, 2016.
  • [35] Y. B. Zhang, G. Q. Chen, L. Zheng, et al., “Effects of geometries on three-dimensional slope stability”, Canadian Geotechnical Journal, vol. 50, no. 3, pp. 233-249, 2013, doi: 10.1139/cgj-2012-0279.
  • [36] L. S. Deng, W. Fan, B. Yu, and Y. Wang, “Influence of the unified strength theory parameters on the failure characteristics and bearing capacity of sand foundation acted by a shallow strip footing”, Advances in Mechanical Engineering, vol. 12, no. 2, pp. 1-13, 2020, doi: 10.1177/1687814020907774.
  • [37] Q. Yan, J. Zhao, C. G. Zhang, and J. Wang, “Ultimate bearing capacity of strip foundations in unsaturated soils considering the intermediate principal stress effect”, Advances in Civil Engineering, vol. 2020, art. no. 8854552, pp. 1-14, 2020, doi: 10.1155/2020/8854552.
  • [38] M. Wróblewska, M. Kowalska, and M. Łupieżowiec, “Slope stability analysis of post-mining dumps with the use of photogrammetric geometry measurements-a case study”, Archives of Civil Engineering, vol. 69, no. 4, pp. 171-185, 2023, doi: 10.24425/ace.2023.147654.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9022413b-b628-4912-8c94-53a6f16c5674
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.