PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of Tensile Creep Test (TCT) for evaluation of low temperature performance of bituminous mixtures used for bridge pavement

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena mieszanek mineralno-asfaltowych stosowanych na obiektach mostowych w niskich temperaturach z wykorzystaniem testu TCT
Języki publikacji
EN
Abstrakty
EN
One of the main causes of road pavement distress are low temperatures, and hence the need to thoroughly study the low temperature performance of all bituminous materials used in road construction. The purpose of this study was to determine the performance of alternative and conventional bituminous mixtures in the temperature range between -25°C and -10°C using for this purpose the Tensile Creep Test (TCT). The low-temperature performance data were evaluated using the Burgers model, a tool that is widely used for evaluation of bituminous mixtures. This research focuses on bridge paving mixtures. These included both conventional (mastic asphalt) and alternative (SMA-MA) materials. It was established, based on the test results and their analysis, that low temperature performance of a bituminous mixture is influenced, in the first place, by the characteristics of the asphalt binder it contains. Furthermore, SMA-MA mixtures showed better low temperature performance than conventional, mastic asphalt type mixtures.
PL
Niska temperatura jest jedną z przyczyn powstawania uszkodzeń nawierzchni drogowych, zatem ocena parametrów niskotemperaturowych powinna być przedmiotem pogłębionych badań materiałów asfaltowych stosowanych w drogownictwie. Celem przeprowadzonych badań było określenie parametrów MMA w zakresie temperatur od -25°C do -10°C, z wykorzystaniem badania pełzania przy rozciąganiu (Tensile Creep Test - TCT). Do oceny parametrów niskotemperaturowych wykorzystano szeroko stosowany do oceny mieszanek mineralno-asfaltowych model Burgersa. Analizie poddano mieszanki stosowane na obiektach mostowych. Badania przeprowadzono zarówno na mieszankach klasycznych stosowanych na obiektach (asfalt lany) jak i alternatywnych mieszanek SMA-MA. Na podstawie uzyskanych wyników i przeprowadzonych analiz stwierdzono, że na parametry niskotemperaturowe kluczowy wpływ mają parametry lepiszcza asfaltowego stosowanego w mieszance. Stwierdzono również, że mieszanki w typie SMA-MA cechują się lepszymi parametrami niskotemperaturowymi niż klasyczne mieszanki w typie asfalt lany.
Rocznik
Strony
679--696
Opis fizyczny
Bibliogr. 57 poz., il., tab.
Twórcy
  • West Pomeranian University of Technology, Faculty of Civil and Environmental Engineering, Szczecin, Poland
  • West Pomeranian University of Technology, Faculty of Civil and Environmental Engineering, Szczecin, Poland
Bibliografia
  • [1] H.D. Jung, Low temperature cracking: test selection. Washington, DC, 1994.
  • [2] M. Pszczola, C. Szydlowski, “Influence of Bitumen Type and Asphalt Mixture Composition on Low-Temperature Strength Properties According to Various Test Methods”, Materials, 2018, vol. 11, no. 11, DOI: 10.3390/ma11112118.
  • [3] U. Isacsson, H. Zeng, “Relationships between bitumen chemistry and low temperature behaviour of asphalt”, Construction and Building Materials, 1997, vol. 11, no. 2, pp. 83-91, DOI: 10.1016/S0950-0618(97)00008-1.
  • [4] M. Marasteanu, K. Moon, E. Teshale, A. Falchetto, M. Turos, W. Buttlar, E. Dave, G. Paulino, S. Ahmed, S. Leon, A. Breaham, B. Behnia, H. Bahia, H. Tabatabaee, R. Velasquez, A. Arshadi, S. Puchalski, S. Mangiafico, C. Williams, A. Kvasnak, Investigation of Low Temperature Cracking in Asphalt Pavements National Pooled Fund Study - Phase II. 2012.
  • [5] M. Pszczoła, J. Judycki, “Evaluation of Thermal Stresses in Asphalt Layers Incomparison with TSRST Test Results”, in: RILEM Bookseries, vol. 4. Springer, 2012, DOI: 10.1007/978-94-007-4566-7_5.
  • [6] U. Isacsson, H. Zeng, “Low-temperature cracking of polymer-modified asphalt”, Materials and Structures, 1998, vol. 31, pp. 58-63, DOI: 10.1007/BF02486415.
  • [7] S.D. Roy, S.A.M. Hesp, “Low-Temperature Binder Specification Development: Thermal Stress Restrained Specimen Testing of Asphalt Binders and Mixtures”, Transportation Research Record, 2001, vol. 1766, no. 1, pp. 7-14, DOI: 10.3141/1766-02.
  • [8] K. Błażejowski, M. Wójcik-Wiśniewska, Wytrzymałość zmęczeniowa i odporność na pękanie mieszanek mineralno-asfaltowych z różnymi asfaltami. Chorzów, 2016.
  • [9] Z. Tabor, Przykłady zastosowania asfaltów wysokomodyfikowanych podczas remontów dróg wojewódzkich. Chorzów, 2016.
  • [10] Z. Du, C. Jiang, J. Yuan, F. Xiao, J. Wang, “Low temperature performance characteristics of polyethylene modified asphalts - A review”, Construction and Building Materials, 2020, vol. 264, art. ID 120704, DOI: 10.1016/j.conbuildmat.2020.120704.
  • [11] D. Rys, M. Jaczewski, M. Pszczola, P. Jaskula, W. Bankowski, “Effect of bitumen characteristics obtained according to EN and Superpave specifications on asphalt mixture performance in low-temperature laboratory tests”, Construction and Building Materials, 2020, vol. 231, art. ID 117156, DOI: 10.1016/j.conbuildmat.2019.117156.
  • [12] X. Lu, U. Isacsson, J. Ekblad, “Influence of polymer modification on low temperature behaviour of bituminous binders and mixtures”, Materials and Structures, 2003, vol. 36, pp. 652-656, DOI: 10.1007/BF02479497.
  • [13] R. Blab, “Performance-Based Asphalt Mix and Pavement Design”, Romanian Journal of Transport Infrastructure, 2013, vol. 2, pp. 21-38, DOI: 10.1515/rjti-2015-0009.
  • [14] M. Tušar, D. Hribar, B. Hofko, “Impact of characteristics of asphalt concrete wearing courses on crack resistance at low temperatures”, 2014. [Online]. Available: https://trid.trb.org/view/1320175. [Accessed: 28. Oct. 2020].
  • [15] D. Hribar, M. Tušar, “Properties of asphalt concrete at low temperatures”, Građevinar, 2012, vol. 64, pp. 825-831, DOI: 10.14256/JCE.662.2012.
  • [16] T. Ma, Y. Zhang, H. Wang, X. Huang, Y. Zhao, “Influences by Air Voids on the Low-Temperature Cracking Property of Dense-Graded Asphalt Concrete Based on Micromechanical Modeling”, Advances in Materials Science and Engineering, 2016, vol. 2016, pp. 1-10, DOI: 10.1155/2016/6942696.
  • [17] D.S. Sudbury, P. Romero, Y. Li, X. Gong, “Evaluating the Effect of Air Voids and Binder Content in Cold Temperature Testing of Asphalt Mixtures with the Bending Beam Rheometer”, in: Cold Regions Engineering 2015, American Society of Civil Engineers, 2015, pp. 229-240, DOI: 10.1061/9780784479315.021.
  • [18] M. Pszczola, C. Szydlowski, M. Jaczewski, “Influence of cooling rate and additives on low-temperature properties of asphalt mixtures in the TSRST”, Construction and Building Materials, 2019, vol. 204, pp. 399-409, DOI: 10.1016/j.conbuildmat.2019.01.148.
  • [19] Y. Tasdemir, E. Agar, “Investigation of the low temperature performances of polymer and fiber modified asphalt mixtures”, Indian Journal of Engineering and Materials Sciences, 2007, vol. 14, no. 2, pp. 151-157.
  • [20] P. Jaskuła, M. Stienss, C. Szydłowski, “Effect of Polymer Fibres Reinforcement on Selected Properties of Asphalt Mixtures”, Procedia Engineering, 2017, vol. 172, pp. 441-448, DOI: 10.1016/j.proeng.2017.02.026.
  • [21] S. Badeli, A. Carter, G. Doré, S. Saliani, “Evaluation of the durability and the performance of an asphalt mix involving Aramid Pulp Fiber (APF): Complex modulus before and after freeze-thaw cycles, fatigue, and TSRST tests”, Construction and Building Materials, 2018, vol. 174, pp. 60-71, DOI: 10.1016/j.conbuildmat. 2018.04.103.
  • [22] H. Wang, J. Yang, H. Liao, X. Chen, “Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers”, Construction and Building Materials, 2016, vol. 122, pp. 184-190, DOI: 10.1016/j.conbuildmat.2016.06.063.
  • [23] J. Zhu, B. Birgisson, N. Kringos, “Polymer modification of bitumen: Advances and challenges”, European Polymer Journal, 2014, vol. 54, pp. 18-38, DOI: 10.1016/j.eurpolymj.2014.02.005.
  • [24] H. Zhu, J. Yang, L. Cong, J. Cui, J. Wan, “Influence of polyester fibre on the performance of Asphalt mixes”, SATC, 2007. [Online]. Available: https://repository.up.ac.za/handle/2263/6004. [Accessed: 12. Dec. 2020].
  • [25] H. Wang, C. Zhang, L. Li, Z. You, A. Diab, “Characterization of Low Temperature Crack Resistance of Crumb Rubber Modified Asphalt Mixtures Using Semi-Circular Bending Tests”, Journal of Testing and Evaluation, 2016, vol. 44, DOI: 10.1520/JTE20150145.
  • [26] S.-J. Lee, C.K. Akisetty, S.N. Amirkhanian, “The effect of crumb rubber modifier (CRM) on the performance properties of rubberized binders in HMA pavements”, Construction and Building Materials, 2008, vol. 22, no. 7, pp. 1368-1376, DOI: 10.1016/j.conbuildmat.2007.04.010.
  • [27] H. Ye, X. Wang, N. Fang, Z. Su, “Low-Temperature Performance and Evaluation Index of Gussasphalt for Steel Bridge Decks”, Advances in Materials Science and Engineering, 2019, vol. 2019, pp. 1-11, DOI: 10.1155/2019/2951412.
  • [28] M. Jaczewski, B. Dolzycki, J. Alenowicz, P. Jaskula, “Impact of reclaimed asphalt pavement (RAP) on low-temperature properties of asphalt concrete” (Wpływ materiału odzyskanego z nawierzchni asfaltowej (RAP) na niskotemperaturowe właściwości betonu asfaltowego), Roads and Bridges - Drogi i Mosty, 2019, vol. 18, no. 4, pp. 303-315, DOI: 10.7409/rabdim.019.020.
  • [29] Y. Zhong, L. Geng, “Thermal stresses of asphalt pavement under dependence of material characteristics on reference temperature”, Mechanics of Time-Dependent Materials, 2009, vol. 13, pp. 81-91, DOI: 10.1007/s11043-008-9073-6.
  • [30] B. Budziński, P. Mieczkowski, “Application of Innovative SMA-MA Mixtures on Bridges”, Applied Sciences, 2020, vol. 10, no. 19, DOI: 10.3390/app10196958.
  • [31] P. Radziszewski, M. Sarnowski, J. Piłat, P. Mieczkowski, K.J. Król, “Innovative SMA-MA mixture for bridge asphalt pavement”, presented at 6th Eurasphalt & Eurobitume Congress, 2016.
  • [32] P. Radziszewski, J. Piłat, M. Sarnowski, K. Kowalski, K.J. Król, Nawierzchnie asfaltowe na obiektach mostowych. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej, 2016.
  • [33] J. Judycki, M. Pszczoła, P. Jaskuła, Modyfikacja metody zginania belek z mieszanek mineralnoasfaltowych oceną ich parametrów reologicznych. Kielce, 2001.
  • [34] J. Judycki, M. Pszczoła, M. Jaczewski, Ł. Mejłun, D. Ryś, Badanie wpływu zastosowania warstw betonu asfaltowego o wysokim module sztywności (AC-WMS) w konstrukcjach nawierzchni na spękania niskotemperaturowe i na zmniejszenie powstawnia deformacji trwałych. Gdańsk, 2014.
  • [35] M. Jaczewski, J. Judycki, P. Jaskuła, Właściwości niskotemperaturowe betonów asfaltowych o wysokim module sztywności (AC WMS) w badaniach trzypunktowego zginania, Czasopismo Inżynierii Lądowej, Środowiska i Architektury, 2016, vol. 63, no. 1, pp. 217-224, DOI: 10.7862/rb.2016.78.
  • [36] F. Pérez-Jiménez, R. Botella, A.H. Martínez, R. Miró, “Analysis of the mechanical behaviour of bituminous mixtures at low temperatures”, Construction and Building Materials, 2013, vol. 46, pp. 193-202, DOI: 10.1016/j.conbuildmat.2013.04.019.
  • [37] TP 151 - Asfaltové smĕsi s vysokým modulem tuhosti (VMT), Technické podmínky. Praga, 2010.
  • [38] M. Bendjima, M. Merbouh, B. Glaoui, “Asphalt concrete behavior in frozen”, International Journal of Civil Engineering and Technology (IJCIET), 2017, vol. 8, pp. 927-936.
  • [39] L. Zhao, J. Chen, S. Wang, “Viscoelastic Analysis of Asphalt Mixture Based on Creep Test”, Research Journal of Applied Sciences, Engineering and Technology, 2012, vol. 5, pp. 819-822.
  • [40] Y. Sun, Z. Gu, J. Wang, X. Yuan, “Research of Method for Solving Relaxation Modulus Based on Three-Point Bending Creep Test”, Materials, 2019, vol. 12, no. 12, DOI: 10.3390/ma12122021.
  • [41] J. Gražulytè, A. Vaitkus, V. Andrejevas, G. Gribulis, “Methods and criteria for evaluation of asphalt mixture resistance to low temperature cracking”, The Baltic Journal of Road and Bridge Engineering, 2017, vol. 12, no. 2, pp. 135-144, DOI: 10.3846/bjrbe.2017.16.
  • [42] H. Bahia, H. Tabatabaee, R. Velasquez, “Asphalt Thermal Cracking Analyser (ATCA)”, in: 7th RILEM International Conference on Cracking in Pavements, A. Scarpas, N. Kringos, I. Al-Qadi, Eds. Netherlands, Dordrecht: Springer, 2012, pp. 147-156, DOI: 10.1007/978-94-007-4566-7_15.
  • [43] E. Zegeye Teshale, H.K. Stolarski, M.O. Marasteanu, “Determination of Creep Compliance of Asphalt Concrete from Notched Semi-Circular Bend (SCB) Test”, Experimental Mechanics, 2013, vol. 53, pp. 919-928, DOI: 10.1007/s11340-012-9688-z.
  • [44] T. Mandal, H. Bahia, “Measuring Cracking Propagation of Asphalt Mixtures Using Notched Samples in the TSRST”, presented at 62nd Annual Canadian Technical Asphalt Association Conference, Halifax, Nova Scotia, Canada, 2017.
  • [45] R. Velasquez, A. Zofka, M. Turos, M.O. Marasteanu, “Bending beam rheometer testing of asphalt mixtures”, International Journal of Pavement Engineering, 2011, vol. 12, pp. 461-474, DOI: 10.1080/10298430903289956.
  • [46] D. Mensching, J. Sias, T. Bennert, M. Medeiros, Jr, M. Elwardany, W. Mogawer, E. Hajj, Z. Alavi, “Low Temperature Properties of Plant-Produced RAP Mixtures in the Northeast”, Road Materials and Pavement Design, 2014, vol. 15, pp. 1-27, DOI: 10.1080/14680629.2014.926617.
  • [47] AASHTO TP 10 - Standard Test Method for Thermal Stress Restrained Specimen Tensile Strength. AASHTO, (n.d.).
  • [48] EN 12697-46:2020 Bituminous mixtures - Test methods - Part 46: Low temperature cracking and properties by uniaxial tension tests. CEN, Brussels, 2020.
  • [49] S. Liu, W. Cao, S. Shang, H. Qi, J. Fang, “Analysis and application of relationships between low-temperature rheological performance parameters of asphalt binders”, Construction and Building Materials, 2010, vol. 24, no. 4, pp. 471-478, DOI: 10.1016/j.conbuildmat.2009.10.015.
  • [50] P. Lin, W. Huang, Y. Li, N. Tang, F. Xiao, “Investigation of influence factors on low temperature properties of SBS modified asphalt”, Construction and Building Materials, 2017, vol. 154, pp. 609-622, DOI: 10.1016/j.conbuildmat.2017.06.118.
  • [51] M. Pszczoła, J. Judycki, “Badania mieszanek mineralno-asfaltowych w niskiej temperaturze”, Drogownictwo, 2013, no. 3, pp. 80-85.
  • [52] Y. Liu, Z. You, “Determining Burger’s Model Parameters of Asphalt Materials Using Creep-Recovery Testing Data”, in Pavements and Materials, ASCE, 2009, DOI: 10.1061/41008(334)3.
  • [53] M. Pszczola, M. Jaczewski, D. Rys, P. Jaskula, C. Szydlowski, “Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test”, Materials, 2018, vol. 11, no. 1, DOI: 10.3390/ma11010100.
  • [54] S. Aflaki, P. Hajikarimi, E. Fini, B. Zada, “Comparing Effects of Biobinder with Other Asphalt Modifiers on Low-Temperature Characteristics of Asphalt”, Journal of Materials in Civil Engineering, 2013, vol. 26, no. 3, DOI: 10.1061/(ASCE)MT.1943-5533.0000835.
  • [55] R. Nagorski, P. Wiśniakowski, K. Blazejowski, M. Nagórska, “Comparative analysis of properties of Bürgers’, Boguslavskis’ and Zener’s materials in view of tests of stress and strain in reference to properties of Asphalt mixes”, Drogi i Mosty, 2012, no. 1, pp. 7-34.
  • [56] R. Nagorski, K. Blazejowski, M. Nagórska, “Comparative analysis of deflections and strains of two road pavements with high traffic load”, Roads and Bridges - Drogi i Mosty, 2015, vol. 14, no. 1, pp. 31-46, DOI: 10.7409/rabdim.015.003.
  • [57] R. Géber, A. Apkaryan, S. Kulkov, L. Gömze, “Linear viscoelastic properties of asphalt mastics using creep-recovery technique”, Materials Science and Engineering-A Publication of the University of Miskolc, 2014, vol. 39, no.2, pp. 5-11.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9021b3f0-fe25-4e01-aa43-7e3e67519d5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.