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Abstract

The paper demonstrates the comparsion of MonteoGamulation (MC) algorithm with the Radial Basis
Function (RBF) neural network enhancement of thmesalgorithm in the reliability case study. In dest, we
dispose of the tank containing liquid water — @perature process variable evolves deterministicbording to
the differential equation, which solution is knowiil component failures are considered as a stdithagents. In
the case of surpassing temperature treshhold dicghiel inside the tank, we interpret the situatesthe system
failure. With regard to process dynamics, we attetopevaluate the tank system unreliability relatedthe
initiative input parameters setting. The neuralwuek is used in equation coeficients calculatiorhick is
executed in each transient state. Due to the neetalorks, for some of the initial component seginwe can
achieve the results of computation faster thanassical way of coeficients calculating and substig into the
equation.

1. Introduction bounds — in this range, we consider system asestabl

. ) . and reliable. The system also contains two electric
Let us have the model of a dynamic system, in which y

the t ¢ . Vi ding to the timd components, responsible for water heating, and
the temperature 1S evolving according to the tme a security valve, which decreases the temperaturthdn
initial component settings. The target is to spetife

o . S . bottom of the tank, there is a faucet for water
probabl_hty of a system failure, which is defined a supplying. We suppose, the volume of water in the
exceeding the temperature bounds. We are als?ank is constant during o’ur experiment
interested in the time necessary for computing thq_et us define variables: '
result. It is proposed to enhance the simuIationT ' ; .

) . . . t) — temperature of water at the time t;
algorithm with neural network tools which will beed ® P

) . ) ) . e Tempmax — maximal temperature of water in the tank;
in calculating the differential equation coeficiers Tempmax = 368,15K

andb (chap. 3. relation (4)) being changed acording t e, <
ki component states (on/off). After eachshkitching, Olgmgm:ﬂ fa”l;rr]énérggljr;emperature of water, for T
which is invoked by either passing the temperatureTempmin - 338 15K

traln5||t|<:n State c:r fa||ufre ofi k:tomp(:jnt()ent, we TUSt Tempbas — security level for the minimal tempemtur
calculate new values of prametersindb in equation Tempbas = 343,13K

(4) according to (2). _ . ,
As a solution, it is appropriate to apply neuraivgeks -TrngEZS — ztéguiléyl/(Ievel for the maximal tempeatur
for the aproximation of parameters (2) dependent o '
the kg, k, and kcomponent settings.

Optimal tool for constructing the simulation algbm _ ; _

is the Monte Carlo (MC) method. This paper is dedliv .|}./Ie —Vé?(irrr\:\gltget:ntphgratg?em(?e = 293K

from [2, 3]. A — tank surface, A = 6Mm

h hmark o h — thermal exchange coeficient, h = 6 Wi?
2. The benchmark process description G, — measure heat capacity, <4184 JkgK

We dispose of the tank with warmed water, whichW: =W, — heating power, W = 5000W
temperature is kept in the specific maximal or miai  tm — process duration, tm = 720 h

'Secu — reserve for the maximum temperature, for T>
(Tempmax + Secu) failure occurs, Secu = 2 K
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hazard rate — transition to on-state

Awion = A wzor=6.10" 0™

hazard rate — transition to off-state
Awioft = A waott=4.10% 't

hazard rate — transition to on or off-state
)\Vson = )\ Vsof‘f::l--]-o3 h_l

3. The equation solution

To evaluate the probability failure, we need tatevr
the differential equation, describing our
evolution. The equation obviously reflects
following points:

a/ decreasing the initial temperature due to heat

penetration through the tank wall

b/ increasing the water temperature caused by twi

heating components, if activated

c/ the water temperature decrease invoked by thrempHau |

security valve activation
Our equation comes from [3] but it is altered fbe t
behaviour of the system

ar_ aT+b (1)
dt
where
_ Alh Qs B[:p Dk3
a=- +
Mg, M L€,
1
b{w EﬁAEhD;QmpEremvwmﬁvw)} ()
p
and
TW1+W2T _Amh
empmax—
Q, = pm : e (3)

p

The solution of (1) follows the equation

(4)

T= (TO +Ejexp&‘m—E
a a

where T is the starting simulation temperature.
The kg, k, and k coefficients equals 1 or O (the specific
component is either on or off). Fog k k, = 1 the

heating components are active and temperature o5:

water in the tank is increasing, fog &k 1 the vent is

system
y the b) the temperature passes by 5 stages

initial temperature is set between Tempmin and
Tempmayx, that is —gF 353,15 K.

4. Creating an algorithm

To construct the correct algorithm for our testecas
simulation, we take into account following points:

a) as mentioned before, for T< Tempmin and also for
T> (Tempmax + Secu) failure occurs

generally — see the diagram:

1K}
Secu Failure
Temphdax q\
¥ 1 =
TermpBas \llf /l\
H
Temphin

Failure

ifs]

Figure 1.Dynamic rules of the system

For each of the temperature stages, the chang&lgwi
of the specific component to the opposite state, that
causes the required temperature turnover (see iftl)) a
stabilization in tolerable bounds. In case of random
failure of the k component, we keep on monitoring
evolution of the temperature, until it exceeds lanit

we consider the system as disfunctional. (In thege

of the k failure definition, the whole system does not
have to be failed yet. The temperature of wateth
tank could be still between bounds.)

¢) There are following rules for components charajes
temperature borders crossing:

State 1: If T(t-1)>= Temphau and T(t) <= Temphau,
then k= 0 (vent will be closed)

2: If T(t-1) <= Temphau and T(t) >= Temphau,
then k = 0 (heating component num. 1 will be cut off)
3: If T(t-1) <= Tempmax and T(t) >= Tempmax,
then k=1 (vent will be opened)

4: If T(t-1) >= Tempbas and T(t) <= Tempbas,
then k = 1 & k; = 1 (both heating components are
active)

If T(t-1) <= Tempbas and T(t) >= Tempbas,
then k= 0 (heating component num. 2 will be cut off)

unclosed and the temperature is decreasing, etc. We | ]
watch the process along the period of tm = 720 fe. Thd) time step option
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Considering fact, that we present the evolutiofdpfat  Consequently, thea and b parameters in (4)
time t during the period ofm, it is necessary to select everywhere in the cycle are replaced with the eakb
an appropriate time to explore all detail chandethe  function of the RBF network.

temperature bahaviour and also to reduce thaVe can generally summarize, that the main
inadequate number of cycles of numerical simulation modification consist in using the RBF as an auwjlia
The optimal solution seems to be the one minuteool for working with equation (4) during the tinoé a
pattern, which reflects suitably all changes atsimulation cycle. In any case, the MC constructibn
temperature borders crossing. Longer patterns do ndhe algorithm remains the same for both cases.

suit our solution due to inaccurancies — a “jumpgitv

of some of the states mentioned in c) occurs6. The results presentation

sometimes. . T . .
Table 1.contains the distibutional function of failure

e) Switching the component to the opposite statddco Probability value averages for each initial compuse
happen at any time in the simulation due to randonfettiings. The results were obtained for’ Monte

failure. Carlo simulations (1- the comp. active, 0 — comp.
inactive at the beginning). The fifth column shathe
f) Period of the process is set for 720 hours. computational time. All results are obtained in shate
of tm = 720 h. The simulation was implemented in the
5. Application of the RBF Matlab software.

Our simulation algorithm contains cycle, runningeov

the process duration, in which (4) evolves accaydin Table 1.The results for T0cycles of Monte Carlo

time. This equation has coefficients and b, that K1 k2 K3 aver.F(tm)| aver. 1[s]
depend on kcomponent states (on/off) — see (2). In the

simulation, the kstate is influenced by either passing 0 0 0 0,3517 | 23150
the temperature transition state (SEigure 1) or 0 0 1 0,5303 | 21740
failure of component itself. It means, that we must 0 1 0 0,5567 | 1928,6
recalculate thea and b whenever the temperature 0 1 1 0,5312 | 2170,7
transition or failure of the ;koccurs. Simply, we are 1 0 0 0,3518 | 2332,1
able to write lines of code to enumerate new vahfes 1 0 1 0,5306 | 2194.0
thﬁa andb rltght in the body oftprodcess dur?_tri]on cycle, 1 1 0 05580 | 19204
whenever it is necessary to do so. e secon

possibility is to apply the Radial Basis Functi®Bf) 1 1 1 0,5602 | 19156
neural network to approximate the functionaodindb aver. 0,4963 | 211838
coefficients depending on &omponent states. sigma 0,0901 174,1

It is acceptable to use other types of neural ne¢wo

nevertheless the RBF is obviously the best to sthlee

problem. This is the result of two main facts, tiys  'able 2. The results for the same Monte Carlo
we are not urged to design the network architecturélgorithm with RBF neural netwodnhancement

(RBF has two layers standardly) and secondly, th

RBF can not be trapped in a local minimum duringl—X% k2 k3 laver.F(tm) aver. {[s]
training phase [1]. RBF complies our requirements o 0 0 0 0,3510]  2383,1
the function approximation [6]. Applying other type 0 0 1 0,5305] 2037,1
of neural network to unriddle this case study amd t 0 1 0 0,5574| 2002,9
compare them with the used RBF network is the matte 0 1 1 05325 20422
of a future research. 1 0 0 0,3506 2390,6
At 'the beglnlng, yve negd to flnq out the convgnlent 1 0 1 0.5305 20405
training set. This is obtained by simple computaid 1 1 0 05578 1975 2
(2) for all combinations of the, Istates (se@able 3). : :
Then, before the process duration cycle, we ardyrea 1 1 1 05593 19689
to create and train the standard RBF architecture +  aver. 04962 21051
there are several implementations and function atipp sigma 0,0906 176,2

of the RBF in programming languages — for example,

the Matlab software provides large neural networkFrom comparsion ofable 1 with Table 2, we can see

toolbox. the results of simulation at the time of 720 hoars
very close — the RBF neural network is able to
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aproximate with good accurancy (that was testdtien
simulation code itself).

The results of computing time look more interesting
the average time necessary to simulate 720 hoags lo
process is shorter by roughly 10 sec. This valaense

to be neglectible, nevertheless the differencessults
between the MC and the modification with RBF are
larger when we look at the specific initial compone
settings.

Generally, we can express the presumption, thiueif
vent is opened and maximally one heating spiral is
activated, it is more useful to enhance the MC
algorithm with RBF network (the result is reachad b
2- 2.5 min faster). In other cases, the Monte Carlo
itself is faster (1 min. advance).

In this place, we should stress out the informatibat

the comparsion test on the MC and RBF network

Ftm)[-]

A RBF enhancement
m MC

0,6000
0,5500 -
0,5000 -
0,4500 -
0,4000 -
0,3500 =
0,3000 -
0,2500 -
0,2000

0

enhancement was executed on the computer, whichigure 2.Failure probability comparsion of the MC
had all applications, including hidden ones, and-no and the RBF neural network enhancement at trme

operation system processes not pertaining to stioala

itself, halted. This measure is needed in order to

provide the simulation the similar computing system

capacity along the whole processing time and abert A RBF enhancement
distortion in result time values (operating system t[s] = MC
sometimes allocate to the other running application 2500.0

the memory, as consequently leads to Matlab 2400'0

processing slow down). ’ :

With respect to the length of algorithm, the MC |23%00 T

enhanced with the RBF is larger in creation and|22000- g . .

training of the network. In the simulation itsethe 2100,0

length of code remains the same. 20000 4 A 4 A a

In Table 2, we also considered time necessary to train| 1900,0 | " E .

the RBF network. 18000

The results fronTable 1.and2. are presented in the | |

figures. The x-axis denotes possible componentstat '

according to binary code, as it is showTable 3. 1222’2 |

Table3.The k component states combination (1 -on, 0 0 2 4 6 8 [

_Of'f)
X axis k1 k2 k3
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
.. etc.
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Figure 3.Computing time comparsion of the MC and
the RBF neural network enhancement

7. Conclusion

For 10 cycles, the failure probability at time t =

720hrs equals to the valuk 7,0~ 0,4963t 0,0901
(MC) or 0,4962+0,0906 (RBF enhancementfhe
algorithm in chap. 4 is implemented in the Matlab
software.

Out of the comparsion of thigigure 1 and Figure 2
follows, that the failure probability values arengar

for both methods.

The whole computing time needed to obtain resolts f
each initial component settings is shorter by appt0

sec. when we use enhancement with RBF network. The
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greater differences in time consuption are evident
specific settings — we can state, that if the ggcuent

is opened and maximally one heating spiral is attie
than it is preferable to add the RBF in algorithitme(
result is known by 2 — 2.5 min faster), in all athe
cases, the plain Monte Carlo method is more sutabl
(faster by about 1 min). Application of the RBF redu
network can sometimes lead to obtain results faster
This information is likely to be applicable in oth@ot
only dynamic simulation, test cases.
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