PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Tunnel Cross-Sectional Area After Blastin

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Prognozowanie pola przekroju poprzecznego tunelu po wykonaniu strzelania
Konferencja
POL-VIET 2023 — the 7th International Conference POL-VIET
Języki publikacji
EN
Abstrakty
EN
In this paper, two methods to predict and calculate the area of the tunnel face after the blasting were used. The first one is an artificial intelligence method using an artificial neural network system (ANN) model, and the second one – the support vector regression (SVR). After building predictive models for the area of the tunnel face after blasting by both methods, on the basis of comparing the results obtained in both methods, the performance of these models was assessed through the root mean square error RMSE and the coefficient of determination R2. RMSE and R2 values of the artificial neural network system (ANN) model were obtained as 0.1473 and 0.903 in training datasets, respectively. These values are 0.1497 and 0.9107 in testing datasets. In the SRV model, RMSE and R2 were equaled to 0.1228 and 0.9331 in training datasets, respectively. These values are 0.1708 and 0.9055, respectively in testing datasets. It can be concluded that artificial intelligence using ANN and SVM models can be used to predict the area of the tunnel face after blasting with high accuracy.
Słowa kluczowe
Rocznik
Strony
39--47
Opis fizyczny
Bibliogr. 13 poz., tab., wykr., zdj.
Twórcy
  • Faculty of Civil Engineering, Hanoi University of Mining and Geology, 18 Vien Stress, Hanoi, VietNam
  • Faculty of Civil Engineering, Hanoi University of Mining and Geology, 18 Vien Stress, Hanoi, VietNam
Bibliografia
  • 1. Armaghani, D.J., Hajihassani, M., Mohamad, E.T., Marto, A., Noorani, S.A., (2014). Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian J. Geosci. 7 (12), 5383–5396.
  • 2. Aref A., Mojtaba, M.A , Mostafa, A., (2021). Support Vector Machines for the Estimation of Specific Charge in Tunnel Blasting. Periodica Polytechnica Civil Engineering, 65(3), 967–976, 2021.
  • 3. Dey, K., Murthy, V.M.S.R., (2012). Prediction of blast induced over break from un-controlled burn-cut blasting in tunnel driven through medium rock class. Tunn. Undergr. Space Technol. 28, 49–56.
  • 4. Esmaeili, M., Osanloo, M., Rashidinejad, F., Aghajani, A.B., Taji, M., (2014). Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting. Eng. Comput. 30 (4), 549–558.
  • 5. Hecht-Nielsen R., (1987). Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the first IEEE international conference on neural networks, San Diego, CA, USA, pp 11–14.
  • 6. Jang, H., Topal, E., (2013). Optimizing over break prediction based on geological parameters comparing multiple regression analysis and artificial neural network. Tunn. Undergr. Space Technol. 38, 161–169.
  • 7. Koopialipoor, M., Armaghani, D.J., Haghighi, M., Ghaleini, E.N., (2017). A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels. Bull. Eng. Geol. Environ.
  • 8. Chi T. N., Do N. A, Pham V. V., Nguyen P. T., Gospodarikov. A., (2022). Prediction of blast-induced the area of the tunnel face in underground excavations using fuzzy set theory ANFIS and artificial neural network ANN. International Journal of GEOMATE, 2022, 23(95), 136-143.
  • 9. Nguyen H, Bui XN, Tran QH, Moayedi H., (2019). Predicting blast-induced peak particle velocity using BGAMs, ANN and SVM: a case study at the Nui Beo open-pit coal mine in Vietnam. Environmental Earth Sciences 78(15). DOI:10.1007/s12665-019-8491-x.
  • 10. Mahtab, M.A., Rossier, K., Kalamaras, G.S., Grasso, P., (1997). Assessment of geological over break for tunnel design and contractual claims. Int. J. Rock Mech. Min. Sci. 34 (3–4).
  • 11. Mohammad Esmaeili, Morteza Osanloo, Farshad Rashidinejad, Abbas Aghajani Bazzazi, Mohammad Taji (2014). Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting. Engineering with Computers. 30, 549–558
  • 12. Mottahedi, A., Sereshki, F., Ataei, M., (2018). Development of overbreak prediction models in drill and blast tunneling using soft computing methods. Eng. Comput. 34 (1), 45–58.
  • 13. Simpson PK (1990) Artificial neural system: foundation, paradigms applications and implementations. Pergamon, New York.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9018d919-5364-421c-8dba-bff8d12fc173
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.