Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper discusses the solving of inverse thermomechanical problems requiring a large number of FEM tasks with various boundary conditions. The study examined the case when all tasks have the same number of nodes, finite elements, and nodal connections. In this study, the speedup of the solution of the inverse problem is achieved in two ways: 1. The solution of all FEM tasks in parallel mode. 2. The use by all FEM tasks a common matrix with addresses of nonzero elements in the stiffness matrices. These algorithms are implemented in the own FEM code, designed to solve inverse problems of the hot metal forming. The calculations showed that developed code in parallel mode is effective for the number of tasks late than 0,7-0,9 of the number of available processors. Thus, at some point, it becomes effective to use a sequential solution to all tasks and to use a common matrix of addresses of nonzero elements in the stiffness matrix. The achieved acceleration at the optimal choice of the algorithm is 2–10 times compared with the classical multivariate calculations in the FEM. The paper provides an example of the practical application of the developed code for calculating the allowable processing maps for laser dieless drawing of ultra-thin wire from copper alloy by solving the thermomechanical inverse problem. The achieved acceleration made it possible to use the developed parallel code in the control software of the laboratory setup for laser dieless drawing.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
42--53
Opis fizyczny
Bibliogr. 19 poz., fig.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Applied Computer Science and Modelling, Krakow, Poland
Bibliografia
- [1] Chandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D., & McDonald, J. (2001). Parallel Programming in OpenMP. Elsevier Science.
- [2] Chenot, J., Massoni, E., & Fourment, J. L. (1996). Inverse problems in finite element simulation of metal forming processes. Engineering Computations, 13(2/3/4), 190–225. https://doi.org/10.1108/02644409610114530
- [3] Furushima, T., & Manabe, K. (2007). Experimental and numerical study on deformation behavior in dieless drawing process of superplastic microtubes. Journal of Materials Processing Technology, 191(1), 59–63. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2007.03.084
- [4] Hensel, A. & Spittel, T. (1978). Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. VEB Deutscher Verlag fur Grundstoffindustrie.
- [5] Jaluria, Y. (2021). Strategies for solving inverse problems in thermal processes and systems. International Journal of Numerical Methods for Heat & Fluid Flow, 31(10), 3073–3088. https://doi.org/10.1108/HFF-12-2019-0926
- [6] Kraft, F. B. (1980). Three fine wire drawing systems – in economic comparison. Wire Journal International, 19, 103–105.
- [7] Kubo, S. (1988). Inverse Problems Related to the Mechanics and Fracture of Solids and Structures. JSME International Journal. Ser. 1, Solid Mechanics, Strength of Materials, 31(2), 157–166. https://doi.org/10.1299/jsmea1988.31.2_157
- [8] Lesnic, D. (2021). Inverse Problems with Applications in Science and Engineering. Chapman and Hall/CRC.
- [9] Li, Y., Quick, N. R., & Kar, A. (2002). Dieless laser drawing of fine metal wires. Journal of Materials Processing Tech., 123(3), 451–458.
- [10] Milenin, A. (2017). Parallel FEM code for simulation of laser dieless drawing process of tubes. Computer Methods in Materials Science, 17(4), 178–185.
- [11] Milenin, A., Kustra, P., Furushima, T., Du, P., & Němeček, J. (2018). Design of the laser dieless drawing process of tubes from magnesium alloy using FEM model. Journal of Materials Processing Technology, 262, 65–74. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2018.06.018
- [12] Milenin, A., Wróbel, M., & Kustra, P. (2021). Investigation of the workability and surface roughness of thin brass wires in various dieless drawing technologies. Archives of Civil and Mechanical Engineering, 22(1), 10. https://doi.org/10.1007/s43452-021-00331-2
- [13] Pokorska, I. (2007). Direct and inverse problems in metal forming of rigid-poroplastic materials. Journal of Materials Processing Technology, 184(1), 146–156. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2006.11.015
- [14] Schenk, O., & Gärtner, K. (2004). Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Computer Systems, 20(3), 475–487. https://doi.org/https://doi.org/10.1016/j.future.2003.07.011
- [15] Szeliga, D., Gawąd, J., & Pietrzyk, M. (2004). Parameters Identification of Material Models Based on the Inverse Analysis. International Journal of Applied Mathematics and Computer Science, 14, 549–556.
- [16] Szeliga, D., & Pietrzyk, M. (2007). Testing of the inverse software for identification of rheological models of materials subjected to plastic deformation. Archives of Civil and Mechanical Engineering, 7(1), 35–52. https://doi.org/https://doi.org/10.1016/S1644-9665(12)60003-X
- [17] Thomas, A. E., Abbes, B., Li, Y. M., Abbes, F., Guo, Y.-Q., & Duval, J.-L. (2017). A coupled thermo-mechanical pseudo inverse approach for preform design in forging. AIP Conference Proceedings, 1896, 170004. https://doi.org/10.1063/1.5008202
- [18] Tiernan, P., & Hillery, M. T. (2004). Dieless wire drawing—an experimental and numerical analysis. Journal of Materials Processing Tech., 155–156(Complete), 1178–1183. https://doi.org/10.1016/j.jmatprotec.2004.04.175
- [19] Tiernan, P., & Hillery, M. T. (2008). Technical paper. Journal of Manufacturing Processes, 10(1), 12–20. https://doi.org/10.1016/j.manpro.2008.05.001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-901071dd-9f3e-4b4a-b589-878e37dd53d8