PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pathways of tRNA turnover in eukaryotic cells

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cell ability to control amount of a transfer RNA is one of the ways to regulate rate of protein synthesis. Because 80–90% dry mass of cells are proteins, the level of translation is determinant to the cell growth. Growth of cells is a key question in tumors therapy and biotechnology. tRNA turnover consist of a three pathways described in a last few years: exosome and TRAMP complex dependent pathway in nucleus, directed to hypomodified or affected tRNA; rapid tRNA decay pathway involving two 5’–3’ exonucleases Rat1 and Xrn1, proposed to occur in nucleus and cytoplasm; stress-activated endonucleolytic cleavage to tRNA halves pathway, founded in cytoplasm with a clear role to direct regulation of translation by tRNA half-molecules inhibition.
Słowa kluczowe
Rocznik
Strony
63--65
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Department of Analytical Chemistry, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • [1] Wierzbicki, A.T., J.R. Haag, and C.S. Pikaard. “Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes”. Cell 135 (2008): 635–648.
  • [2] Pikaard, C.S., et. al. “Roles of RNA polymerase IV in gene silencing”. Trends Plant Sci 13 (2008): 390–397.
  • [3] Huang, Y., and R.J. Maraia. “Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human”. Nucleic Acids Res 29(13), 2001: 2675–2690.
  • [4] Haeusler, R.A., and D.R. Engelke. “Spatial organization of transcription by RNA polymerase III”. Nucleic Acids Res 34(17), 2006: 4826–4836.
  • [5] Werner, M., P. Th uriaux, and J. Soutourina. “Structure--function analysis of RNA polymerases I and III”. Curr Opin Struct Biol 19 (2009): 740–745.
  • [6] Hopper, A.K., and E.M. Phizicky. “tRNA transfers to the limelight”. Genes Dev 17 (2003): 162–180.
  • [7] Hopper, A.K., D.A. Pai, and D.R. Engelke. “Cellular dynamics of tRNAs and their genes”. FEBS Let 584 (2010): 310–317.
  • [8] Phizicky, E.M., and D.J. Alfonzo. “Do all modifications benefit all tRNAs?” FEBS Let 584 (2010): 265–271.
  • [9] Kadaba, S., et al. “Nuclear surveillance and degradation of hypomodified initiator tRNAMet”. S. cerevisiae. Genes Dev 18 (2004): 1227–1240.
  • [10] LaCava, J., et al. “RNA degradation by the exosome is promoted by a nuclear polyadenylation complex”. Cell 121 (2005): 713–724.
  • [11] Wang, X., et al. “Degradation of hypomodified tRNA(iMet) in vivo involves RNA-dependent ATPase activity of the DExH helicase Mtr4p”. RNA 14 (2008): 107–116.
  • [12] Schneider, C., J.T. Anderson, and D. Tollerve. “The Exosome Subunit Rrp44 Plays a Direct Role in RNA Substrate Recognition”. Mol Cell 27 (2007): 324–331.
  • [13] Copela, L.A., et al. “Competition between the Rex1 exonuclease and the La protein affects both Trf4p--mediated RNA quality control and pre-tRNA maturation”. RNA 14 (2008): 1214–1227.
  • [14] Ozanick, S.G., et al. “Rex1p deficiency leads to accumulation of precursor initiator tRNAMet and polyadenylation of substrate RNAs in Saccharomyces cerevisiae”. Nucleic Acids Res 37 (2009): 298–308.
  • [15] Reinisch, K.M., and S.L. Wolin. “Emerging themes in non-coding RNA quality control”. Curr Opin Struct Biol 17, (2007): 209–214.
  • [16] Alexandrov, A., et al. “Rapid tRNA decay can result from lack of nonessential modifications”. Mol Cell 21 (2006): 87–96.
  • [17] Chernyakov, I., et al. “Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 50–30 exonucleases Rat1 and Xrn1”. Genes Dev 22 (2008): 1369–1380.
  • [18] Kim M., et al. “The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II”. Nature 432(7016), 2004: 517–522.
  • [19] Sheth U., and R. Parker. “Decapping and decay of messenger RNA occur in cytoplasmic processing bodies”. Science 300(5620), 2003: 805–808.
  • [20] Th ompson, D.M., and R. Parker. “The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae”. J. Cell Biol 185 (2009): 43–50.
  • [21] Yamasaki, S., et al. “Angiogenin cleaves tRNA and promotes stress-induced translational repression”. J Cell Biol 185 (2009): 35–42.
  • [22] Th ompson, D.M., and R. Parker. “Stressing out over tRNA cleavage”. Cell 138 (2009): 215–219.
  • [23] White, R.J. “RNA polym erases I and III, non-coding RNAs and cancer”. Trends Genet 24 (2008): 622–629.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-900a6248-2c46-4f69-8e97-b0a061569f27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.