Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Increasing urban populations raises a number of problems and risks that are strengthened by observed and projected climate change. An increase in green areas (so-called green infrastructure) has turned out to be an effective means of lowering temperature in the city. Green roofs can be one of the possible measures leading to achieving this aim. The aim of the study was the analysis of temperature changes of different roof surfaces (conventional roof, board, intensive roof substrate without plant cover, substrate covered with plants (shrubs). Studies on comparing the temperature between a conventional roof and green roofs were carried out in the period from April to September 2015 on the roof of the building of the Faculty of Modern Languages, University of Warsaw. The measurement was performed using the FLIR SC620 thermal imaging system. As a result of the tests, it was found that in the summer months the differences between the temperature of the green roof and the conventional roof amounted to a maximum of 31.3°C. The obtained results showed that the roof with vegetation can significantly contribute to the mitigation of the urban heat island phenomenon in urban areas during summer periods.
Słowa kluczowe
Rocznik
Tom
Strony
632--640
Opis fizyczny
Bibliogr. 35 poz., il., wykr.
Twórcy
autor
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Wydział Budownictwa i Inżynierii Środowiska, ul. Nowoursynowska 159, 02-776 Warszawa, Poland
autor
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Wydział Budownictwa i Inżynierii Środowiska, ul. Nowoursynowska 159, 02-776 Warszawa, Poland
autor
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Wydział Budownictwa i Inżynierii Środowiska, ul. Nowoursynowska 159, 02-776 Warszawa, Poland
autor
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Wydział Budownictwa i Inżynierii Środowiska, ul. Nowoursynowska 159, 02-776 Warszawa, Poland
Bibliografia
- Baryła, A., Gnatowski, T., Karczmarczyk, A. & Szatyłowicz, J. (2019). Changes in temperature and moisture content of an extensivetype green roof. Sustainability, 11(9), 2498. https://doi.org/10.3390/su11092498
- Bevilacqua, P., Mazzeo, D., Bruno, R. & Arcuri, N. (2017). Surface temperature analysis of an extensive green roof for the mitigation of urban heat island in southern mediterranean climate. Energy and Buildings, 150, 318-327.
- Brenneisen, S. (2006). Space for urban wildlife: designing green roofs as habitats in Switzerland. Urban Habitats, 4, 27-36.
- Burszta-Adamiak, E., Fudali, E., Łomotowski, J. & Kolasińska, K. (2019). A pilot study on improve the functioning of extensive green roofs in city centers using mosses. Scientific Review – Engineering and Environmental Sciences, 28(1), 118-130. https://doi.org/10.22630/PNIKS.2019.28.1.11
- Carter, T. & Keeler, A. (2008). Life-cycle cost–benefit analysis of extensive vegetated roof systems. Journal of Environmental Management, 87(3), 350-363. https://doi.org/10.1016/j.jenvman.2007.01.024
- Castleton, H.F., Stovin, V., Beck, S.B.M. & Davison, J.B. (2010). Green roofs; building energy savings and the potential for retrofit. Energy and Buildings, 42(10), 1582-1591. https://doi.org/10.1016/j.enbuild.2010.05.004
- Czemiel Berndtsson, J. (2010). Green roof performance towards management of runoff water quantity and quality: a review. Ecological Engineering, 36(4), 351-360. https://doi.org/10.1016/j.ecoleng.2009.12.014
- Dohojda, M., Podawca, K. & Witkowska-Dobrev, J. (2018). Termomodernization analyses of terraces located above existing apartments. E3S Web of Conferences, 44, 00032. https://doi.org/10.1051/e3sconf/20184400032
- Dunnet, N. & Kingsbury, N. (2004). Planting green roofs and living walls. Portland, Oregon: Timber Press.
- Fang, C.F. (2008). Evaluating the thermal reduction effect of plant layers on rooftops. Energy and Buildings, 40(6), 1048-1052. https://doi.org/10.1016/j.enbuild.2007.06.007
- Forschungsanstalt Landschaftsentwicklung Landschaftsbau [FLL] (2008). Richtlinie für die Planung, Ausführung und Pflege von Dachbegrünungen (Dachbegrünungsrichtlinie) [Guidelines for the planning, construction and maintenance of green roofing (Green roof policy)]. Bonn: Forschungsanstalt Landschaftsentwicklung Landschaftsbau.
- Heusinger, J. & Weber, S. (2015). Comparative microclimate and dewfall measurements at an urban green roof versus bitumen roof. Building and Environment, 92, 713-723.
- Jelinkova, V., Dohnal, M. & Picek, T. (2015). A green roof segment for monitoring the hydrological and thermal behaviour of anthropogenic soil systems. Soil and Water Research, 10(4), 262-270.
- Jim, C.Y. & Peng, L.L.H. (2012). Weather effect on thermal and energy performance of an extensive tropical green roof. Urban Forestry and Urban Greening, 11(1), 73-85. http://dx.doi.org/10.1016/j.ufug.2011.10.001
- Karachaliou, P., Santamouris, M. & Pangalou, H. (2016). Experimental and numerical analysis of the energy performance of a large scale intensive green roof system installed on an office building in Athens. Energy and Buildings, 114, 256-264. http://dx.doi.org/10.1016/j.enbuild.2015.04.055
- Karczmarczyk, A., Baryła, A. & Kożuchowski, P. (2017). Design and Development of Low P-Emission Substrate for the Protection of Urban Water Bodies Collecting Green Roof Runoff. Sustainability, 9(10), 1795. https://doi.org/10.3390/su9101795
- Köhler, M., Schmidt, M., Grimme, F.W., Laar, M., de A. Paiva, V.L. & Tavares, S. (2002). Green roofs in temperate climates and in the hot-humid tropics far beyond the aesthetics. Environmental Management and Health, 13(4), 382-391. https://doi.org/10.1108/09566160210439297
- Li, J., Wai, O.W.H., Li, Y.S., Zhan, J., Ho, Y.A., Li, J. & Lam, E. (2010). Effect of green roof on ambient CO2 concentration. Building and Environment, 45(12), 2644-2651. https://doi.org/10.1016/j.buildenv.2010.05.025
- Lin, B.S., Yu, C.C., Su, A.T. & Lin, Y.J. (2013). Impact of climatic conditions on the thermal effectiveness of an extensive green roof. Building and Environment, 67, 26-33. http://dx.doi.org/10.1016/j.buildenv.2013.04.026
- Mularz, S. & Wróbel, A. (2003). Badanie rozkładu temperatury powierzchni terenu z wykorzystaniem zobrazowań termowizyjnych [Investigation of temperature distribution on a terrain surface using thermovision imaging]. Archives of Photogrammetry, Cartography and Remote Sensing [Archiwa Fotogrametrii, Kartografii i Teledetekcji], 13b, 441-450.
- Nawaz, R., McDonald, A. & Postoyko, S. (2015). Hydrological performance of a full-scale extensive green roof located in a temperate climate. Ecological Engineering, 82, 66-80. https://doi.org/10.1016/j.ecoleng.2014.11.061
- Oberndorfer, E., Lundholm, J., Bass, B., Coffman, R.R., Doshi, H., Dunnett, N., Gaffin, S., Köhler, M., Liu, K.K.Y. & Rowe, B. (2007). Green roofs as urban ecosystems: ecological structures, functions, and services. Bioscience, 57(10), 823. https://doi.org/10.1641/B571005
- Pęczkowski, G., Kowalczyk, T., Szawernoga, K., Orzepowski, W., Żmuda, R. & Pokładek, R. (2018). Hydrological performance and runoff water quality of experimental green roofs. Water, 10(9), 1185. https://doi.org/10.3390/w10091185
- Solcerova, A., Ven, F. van de, Wang, M., Rijsdijk, M. & Giesen, N. van de (2017). Do green roofs cool the air? Building and Environment, 111, 249-255.
- Stovin, V., Vesuviano, G. & Kasmin, H. (2012). The hydrological performance of a green roof test bed under UK climatic conditions. Journal of Hydrology, 414-415, 148-161.
- Susca, T. (2019). Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate. Building and Environment, 162, 106273. https://doi.org/10.1016/j.buildenv.2019.106273
- Takakura, T., Kitade, S. & Goto, E. (2000). Cooling effect of greenery cover over a building. Energy and Buildings, 31(1), 1-6. https://doi.org/10.1016/S0378-7788(98)00063-2
- Takebayashi, H. & Moriyama, M. (2007). Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Building and Environment, 42(8), 2971-2979. https://doi.org/10.1016/j.buildenv.2006.06.017
- Taleghani, M., Tenpierik, A., van den Dobbelsteen, D.J. & Sailor (2014). Heat mitigation strategies in winter and summer: field measurements in temperate climates. Building and Environment, 81, 309-319. https://doi.org/10.1016/j.buildenv.2014.07.010
- Teemusk, A. & Mander, Ü. (2009). Green roof potential to reduce temperature fluctuations of a roof membrane: a case study from Estonia. Building and Environment, 44(3), 643-650.
- Theodosiou, T.G. (2003). Summer period analysis of the performance of a planted roof as a passive cooling technique. Energy and Building, 35(9), 909-917. https://doi.org/10.1016/ S0378-7788(03)00023-9
- Van Renterghem, T. & Botteldooren, D. (2009). Reducing the acoustical facade load from road traffic with green roofs. Building and Environment, 44(5), 1081-1087. https://doi.org/10.1016/j.buildenv.2008.07.013
- Walawender, J.P. (2015). Wpływ dachów zielonych na warunki klimatyczne w mieście [Impact of green roofs on the climatic conditions in cities]. Retrieved from: http://zielonainfrastruktura.pl/wplyw-dachow-zielonych-nawarunki-klimatyczne-w-miescie/
- Wong, N.H., Chen, Y., Ong, C.L. & Sia, A. (2003). Investigation of thermal benefits of rooftop garden in the tropical environment. Building and Environment, 38(2), 261-270. https://doi.org/10.1016/S0360-1323(02)00066-5
- Yang, J., Yu, Q. & Gong, P. (2008). Quantifying air pollution removal by green roofs in Chicago. Atmospheric Environment, 42(31), 7266-7273.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9004ad31-f753-496b-ae2d-c6dedb9b0eac