Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
The International Chemical Engineering Conference 2021 (ICHEEC): 100 Glorious Years of Chemical Engineering and Technology, September 16–19, 2021
Języki publikacji
Abstrakty
Ultrasonically improved electrochemically generated adsorbent (UEGA) has been synthesized and used for adsorption of fluoride ions from fluoride laden waste water. UEGA was prepared in two major steps, firstly electrochemically generated adsorbent (EGA) was prepared using electrolytic method followed by ultrasonication treatment. Ultrasonication causes size reduction which leads to increase in surface area viz. active site which helps to enhance attachment of negatively charged fluoride ion on positively changed UEGA from waste water. UEGA was prepared at three different amplitude i.e. 50, 70 and 90% respectively. Taguchi optimization for defluoridation was carried out considering operating parameters such as initial concentration; contact time; adsorbent dose; and temperature. The results obtained demonstrated that adsorption showed different fluoride removal at varying frequency. This study proved that varying percentage amplitude of ultrasonication significantly affects defluoridation efficiency.
Czasopismo
Rocznik
Tom
Strony
109–--117
Opis fizyczny
Bibliogr. 7 poz., rys., tab.
Twórcy
autor
- Visvesvaraya National Institute of Technology, Nagpur
autor
- Visvesvaraya National Institute of Technology, Nagpur
autor
- Visvesvaraya National Institute of Technology, Nagpur
autor
- Visvesvaraya National Institute of Technology, Nagpur
Bibliografia
- 1. Barathi M., Krishna Kumar A.S., Rajesh N., 2014. A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption. Ultrason. Sonochem., 21, 1090–1099. DOI: 10.1016/j.ultsonch.2013.11.023.
- 2. Ghosh S.B., Mondal N.K., 2019. Application of Taguchi method for optimizing the process parameters for the removal of fluoride by Al-impregnated Eucalyptus bark ash. Environ. Nanotechnol. Monit. Manage., 11, 100206. DOI: 10.1016/j.enmm.2018.100206.
- 3. Jadhao V.K., Kodape S., Junghare K., 2019. Optimization of electrocoagulation process for fluoride removal: a blending approach using gypsum plaster rich wastewater. Sustain. Environ. Res., 29, 6 (2019). DOI: 10.1186/s42834-019-0002-y.
- 4. Mouedhen G., Feki M., De Petris Wery M., Ayedi H.F., 2008. Behavior of aluminum electrodes in electrocoagulation process. J. Hazard. Mater. 150, 124–135. DOI: 10.1016/j.jhazmat.2007.04.090.
- 5. Ruthven D.M., 1984. Principles of adsorption and adsorption processes. John Wiley & Sons.
- 6. Sompech S., Srion A., Nuntiya A., 2012. The effect of ultrasonic treatment on the particle size and specific Surface area of LaCoO3. Procedia Eng., 32, 1012–1018. DOI: 10.1016/j.proeng.2012.02.047.
- 7. Tomar V., Prasad S., Kumar D., 2014. Adsorptive removal of fluoride from aqueous media using Citrus limonum (lemon) leaf. Microchem. J., 112, 97–103. DOI: 10.1016/j.microc.2013.09.010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-90025bd7-3f94-4c99-a648-3b572660fa58