PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indication of the Target Alternative Fuel for Shipping

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
he article presents the regulations of the International Maritime Organization aimed at reducing carbon dioxide emissions from international shipping. One of the main objectives is to search the alternative to fossil fuels. The main problem is the lack of indication of the target fuel for shipping. The current changes, forced by international regulations, are made by the decisions of shipowners who themselves are looking for an alternative fuel that will enable them to continue their activities. Attempts have been made to use fuels considered as transient, which will be used in the perspective of about 10 years. However, this is too short a time compared to the life of the ship (20-30 years). This will force another change in the type of fuel used on ships still in operation, which will result in additional costs associated with the adaptation of the ship’s power plant fuel systems to a different type of fuel. The article evaluates the changes that currently taking place. Scenarios of the most likely directions of changes in a perspective of 2050 have been indicated.
Twórcy
  • Marine Propulsion Plants Department, Gdynia Maritime University, ul. 81-87 Morska, 81-225 Gdynia, Poland
Bibliografia
  • 1. IMO. 2000. Emission control areas (ECAs) designated under MARPOL Annex VI, http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Emission-Control-Areas-(ECAs)-designated-under-regulation-13-of-MAR-POL-Annex-VI-(NOx-emission-control).aspx.
  • 2. IMO. 2000. Sulfur Oxides. Ammonia as Marine Fuel, Sustainability Whitepaper, October 2020. http://imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Sulphur-oxides-(SOx)-%E2%80%93-Regulation-14.aspxABS.
  • 3. IMO Action. 2017. IMO Action to Reduce Greenhouse Gas Emission from International Shipping, https://www.gcca.eu/sites/default/files/2020-06/2017%20IMO%20Action%20to%20Reduce%20GHG%20Emissions%20from%20International%20Shipping.pdf.
  • 4. IMO. 2020. MEPC 75/7/15, Reduction of GHG Emissions from Ships. Fourth IMO GHG Study 2020 – Final report. Dated 29 July 2020.
  • 5. IMO. 2012. Resolution MEPC.215(63). Guidelines for Calculation of Reference Lines for Use with EEDI; International Maritime Organization:London, UK, 2012.
  • 6. IMO. 2021. Resolution MEPC.332(76) – Amendments to the 2018 Guidelines on the method of calculation on the attained energy efficiency design index(EEDI) for new ships (Resolution MEPC.308(73), as amended by Resolution MEPC.322(74).
  • 7. IMO. 2012. MEPC.59/24/Add.1, Annex 19. Guidance for the Development of a Ship Energy Efficiency Management Plan, SEEMP; InternationalMaritime Organization: London, UK, 2012.
  • 8. IMO. 2021. Resolution MEPC.333(76) – 2021 Guidelines on the method of calculation the attained energy efficiency existing ship index (EEXI).
  • 9. IMO. 2021. Resolution MEPC.336(76) – 2021 Guidelines on operational carbon intensity indicators and the calculation methods (CII Guidelines, G1).
  • 10. IMO. 2021. Resolution MEPC.337(76) – 2021Guidelines on the reference lines for use with operational carbon intensity indicators (CII Reference lines guidelines, G2).
  • 11. IMO. 2021. Resolution MEPC.338(76) – 2021Guidelines on the operational carbon intensity reduction factors relative to reference lines (CII Reduction factor guidelines, G3).
  • 12. IMO. 2021. Resolution MEPC.339(76) – 2021 Guidelines on the operational carbon intensity rating of ships (CII Rating guidelines, G4).
  • 13. IMO. 2018. MEPC 72/INF.5. (2018), Reduction of GHG from Ships. Understanding CO2 Emissions and Challenges in Assessing the Operational Efficiency for Ships; International Maritime Organization: London, UK, 2018.
  • 14. ICCT. 2018. The International Maritime Organization’s initial greenhouse strategy, International Council on Clean Transportation.
  • 15. Herdzik J. Methane Slip during Cargo Operations on LNG Carriers and LNG Fueled Vessels, New Trends in Production Engineering. 2018; 1(1): 293–300.
  • 16. Andersson K., Brynolf S., Hansson J., Grahn M. Criteria and Decision Support for A Sustainable Choice of Alternative Marine Fuels, Sustainability. 2010; 12: 3623. DOI: 10.3390/su12093623.
  • 17. DNV-GL Maritime. 2019. Assessment of Selected Alternative Fuels and Technologies, June 2019.
  • 18. Lloyd’s Register Marine. 2021. Global Marine Fuel Trends 2030; Lloyd’s Register: London, UK, 2021.
  • 19. MAN B&W. 2013. Emission Project Guide. Two-stroke Marine Engines, MAN Diesel & Turbo, 2013.
  • 20. Directive. 2015. 2015/757 of the European Parliament and of the Council of 29 April 2015, as amended by Delegated Regulation 2016/2071, On monitoring, reporting and verification of carbon dioxide emissions from maritime transport, and amended Directive 2009/16/EC.
  • 21. Directive. 2018. 2018/410 of the European Parliament and of the Council of 14 March 2018 amending Directive 2003/87/EC To enhance cost-effective emission reductions and low-carbon investments, and Decision (EU) 2015/1814.
  • 22. DNV. 2018. Bio Diesel: Emissions Depend on the Production Method; DNV GL: Bærum, Norway, 2018.
  • 23. Herdzik J. Decarbonization of Marine Fuels – the Future of Shipping, Energies. 2021; 14: 4311. https://doi.org/10.3390/en14144311.
  • 24. Stenersen D., Thonstad O. GHG and NOx emissions from gas fuelled engines, SINTEF Ocean AS Maritim. 2017. https://midc.be/wp-content/uploads/2018/06/methane-slip-from-gas-engines-mainreport-1492296.pdf.
  • 25. Comer B., Osipova L. Accounting well-to-wake carbon dioxide equivalent emissions in maritime transportation climate policies, International Council on Clean Transportation. 2021.
  • 26. IMO. 2015. Resolution MSC 39(95), Adoption of the International Code for the Ships Using Gases other Low-Flashpoint fuels (IGF Code). Adopted 11 June 2015.
  • 27. Transport & Environment. 2018. Roadmap to decarbonizing European Shipping. A study by Transport & Environment. November 2018. On-line at: https://www.transportenvironment.org/publications/roadmap-decarbonising-european-shipping.
  • 28. Liu M., Li C., Koh E.K., Ang Z., Lam J.S.L. Is methanol a future marine fuel for shipping? IOP Conf. Ser. J. Phys. 2019; 1357. DOI: 10.1088/17426596/1357/1/012014.
  • 29. Andersson K., Salazar C.M. 2015. Methanol as A Marine Fuel Report, Methanol Institute, 2015.
  • 30. ABS. 2020. Ammonia as Marine Fuel, Sustainability Whitepaper, October 2020.
  • 31. IMO. 2020. CCC 7/INF8, Forecasting the alternative fuel. Ammonia. Dated 10 July 2020.
  • 32. MAN Energy Solutions. Engineering the future two-stroke green-ammonia engine. On-line at https://man-es.com/docs/default-source/marine/tools/engineering-the-future-two-stroke-green-ammonia-engine.pdf?sfvrsn=2b4d9d8a_10.
  • 33. DNV-GL. 2020. Ammonia as A Marine Fuel, Safety Handbook, Green Shipping Programme.
  • 34. Hansson J., Brynolf S., Fridell E., Lehtveer M. 2020. The Potential Role of Ammonia as Marine Fuel – Based on Energy System Modelling and Multi-Criteria Decision Analysis, Sustainability. 2020; 12: 3625; DOI: 10.3390/su12083265.
  • 35. DNV. 2021. Rising to the Challenge of Hydrogen Economy; DNV: Bærum, Norway, 2021.
  • 36. BP. 2021. Statistical Review of World Energy, 70th edition, https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf.
  • 37. DNV. 2022. Hydrogen forecast to 2050, Energy Transition Outlook, 2022.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ffd5db4-069c-4e2d-ab3d-3a9442ed37a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.