PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrical and optical properties of spin-coated SnO2 nanofilms

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
SnO2 nanocrystalline thin films have been deposited on oxidized silicon substrates by spin-coating from a precursor solution, followed by slow thermal annealing in oxygen atmosphere at different temperatures (500 to 900 °C). The precursor solution consisted of 1.0 to 2.0 M SnCl4•5H2O in isopropanol. It was shown that the concentration of the precursor solution, annealing temperature and heating rate had a significant effect on the structural, optical and electrical properties of the studied thin films. The topography of SnO2 thin films was examined by scanning electron microscopy (SEM). Furthermore, as-deposited films were characterized by X-ray diffraction (XRD), UV-Vis and impedance spectroscopy.
Wydawca
Rocznik
Strony
729--736
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., tab.
Twórcy
autor
  • Silesian University of Technology, Institute of Electronics, Akademicka 16, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Electronics, Akademicka 16, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Electronics, Akademicka 16, 44-100 Gliwice, Poland
autor
  • Silesian University Of Technology, Dept. Of Optoelectronics, B. Krzywoustego 2, 44-100 Gliwice, Poland
  • Silesian University Of Technology, Institute Of Engineering Materials And Biomaterials, S. Konarskiego 18, 44-100 Gliwice, Poland
autor
  • Silesian University Of Technology, Institute Of Electronics, Akademicka 16, 44-100 Gliwice, Poland
autor
  • Silesian University Of Technology, Institute Of Electronics, Akademicka 16, 44-100 Gliwice, Poland
  • Silesian University of Technology, Institute of Electronics, Akademicka 16, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Electronics, Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
  • [1] BAJAJ G., SONI R.K., Open Surf. Sci. J., 3 (2011), 65.
  • [2] TARWAL N.L., DEVAN R.S., MA Y.R., PATIL P.S., Electrochim. Acta, (2010), DOI:10.1016/J.ELECTACTA.2012.03.135.
  • [3] GAIDI M., HAJJAJI A., SMIRANI R., BESSAIS B., EL KHAKANI M.A., J. Appl. Phys., 108 063537 (2010), 1.
  • [4] BAZARGAN S., HEINIG N.F., PRADHAN D., LEUNG K.T., Cryst. Growth Des., 11 (2011), 247.
  • [5] BADALYAN S.M., RUMYANTSEVA M.N., NIKOLAEV S.A., MARIKUTSA A.V., SMIRNOV V.V., ALIKHANIAN A.S., GASKOV A.M., Inorg. Mater.+, 46 (2010), 232.
  • [6] LUO L., BOZYIGIT D., WOOD V., NIEDERBERGER M., Chem. Mater., 25 (2013), 4901.
  • [7] SHARMA S., VOLOSIN A.M., SCHMITT D., SEO DK., J. Mater. Chem. A, 1 (2013), 699.
  • [8] HOA HONG N., SAKAI J., PRELLIER W., HASSINI A., J. Phys.-Condens. Mat., 17 (2005), 1697.
  • [9] PAN F., SONG C., LIU X.J., YANG Y.C., ZENG F., Mater. Sci. Eng. R-Rep., 62 (2008) 1.
  • [10] COEY J.M.D., DOUVALIS A.P., FITZGERALD C.B., VENKATESAN M., Appl. Phys. Lett., 84 (2004), 1332.
  • [11] LIU X.F., SUN Y., YU R.H., J. Appl. Phys., 101 (2007), 123907.
  • [12] WANG X.L., ZENG Z., ZHENG X.H., J. Appl. Phys., 101 (2007), 09H104.
  • [13] OGALE S.B., CHOUDHARY R.J., BUBAN J.P., LOFLAND S.E., SHINDE S.R., KALE S.N., KULKARNI V.N., HIGGINS J., LANCI C., SIMPSON J.R., BROWNING N.D., DAS SARMA S., DREW H.D., GREENE R.L., VENKATESAN T., Phys. Rev. Lett., 91 (2003), 077205.
  • [14] BORGES P.D., SCOLFARO L.M.R., LEITE ALVES H.W., DA SILVA JR. E.F., ASSALI L.V.C., Nanoscale Res. Lett., 7 (2012), 540.
  • [15] PAWLICKA A., Recent Pat. Nanotech., 3 (2009), 177.
  • [16] CHUN-BIN C., LEI X., XUE-PING S., ZHAO-QI S., J. Vac. Sci. Technol. A, 28 (2010), 48.
  • [17] GULLIEN C., HERRERO J., J. Phys. D Appl. Phys., 46 (2013), 295302.
  • [18] GASPAR D., PIMENTE A.C. MATEUS T., LEITA J.P., SOARES J., FALCA B.P., ARAU‘JO A., VICENTE A., FILONOVICH S.A., A‘GUAS H., MARTINS R., FERREIRA I., Sci. Rep.-UK, 3 (2013), 1469.
  • [19] IZYDORCZYK W., IZYDORCZYK J., MAZURKIEWICZ J., MAGNUSKI M., ULJANOW J., Electrical characterization of 1D SnO2 nanowires, 12th IEEE Conference on
  • Nanotechnology. NANO’12, Birmingham, United Kingdom, 20 – 23 August 2012, 1 – 6.
  • [20] MAJUMDER S., Mater. Sci.-Poland, 27 (2009), 123.
  • [21] FIERRO L.G. (Ed.), Metal Oxides: Chemistry and Applications, CRC Taylor & Francis, Boca Raton, 2006.
  • [22] WEIMAR U., Gas Sensing with Tin Oxide: Elementary Steps and Signal Transduction, University of Tubingen, 2001.
  • [23] SCHIERBAUM K.-D., Sensor. Actuat. B-Chem., 24 – 25(1995), 239.
  • [24] SCHMID W., Consumption measurements on SnO2 sensors in low and normal oxygen concentration, University of Tubingen, 2004. ¨
  • [25] HERNANDEZ -RAM´IRES F., TARANCON A., CASALS O., RODRIGUEZ J., ROMANO-RODRIGUEZ A., MORANTE J.R., BARTH S., MATHUR S., CHOI T.Y., POULIKAKOS D., CALLEGARI V., NELLEN P.M., Nanotechnology, 17 (2006), 5577.
  • [26] LINK S., A. EL-SAVED M., J. Phys. Chem. B, 103 (1999), 4212.
  • [27] KARASINSKI ´ P., GONDEK E., DREWNIAK S., KITYK I. V., J. Sol-Gel Sci. Techn., 61, (2012), 355.
  • [28] TAUC J., GRIGOROVICI R., VANCU A., Phys. Status Solidi A, 15 (1966), 627.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ffc07a8-4a40-4b4f-aa30-23a644d8fb3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.