PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of despeckle filtering on classification of breast tumors using ultrasound images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultrasound is the most widely used imaging modality for screening of breast tumors. However, due to the presence of speckle noise in an ultrasound image, the diagnostic information gets masked and the interpretation of the breast abnormalities becomes difficult for the radiologist. The texture of the tumor region and the shape/margin characteristics are considered to be important parameters for the analysis of the breast tumors. In the present work, exhaustive experimentation has been carried out for the design of CAD systems for classification of breast tumors by considering (a) original images only, (b) despeckled images only and (c) both original and despeckled images together (hybrid approach). Total 100 breast ultrasound images (40 benign and 60 malignant) have been used for the analysis. Initially, these images have been despeckled using six filters namely Lee sigma, BayesShrink, DPAD, FI, FB and HFB filters. Total 162 features (149 texture and 13 morphological features) have been computed from both original and despeckled breast ultrasound images and SVM classifier has been used extensively for the classification. The results of the study indicate that the hybrid approach of CAD system design using texture features computed from original images combined with morphological features computed from images despeckled by DPAD filter yield optimal performance for classifica-tion of benign and malignant breast tumors with a classification accuracy of 96.0%. From the promising results of the study it can be concluded that the proposed hybrid CAD system design could be used as a second opinion tool in clinical setting.
Twórcy
autor
  • Thapar Institute of Engineering and Technology, Patiala, Punjab, India
  • CSIR – Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India
  • Thapar Institute of Engineering and Technology, Patiala, Punjab, India
Bibliografia
  • [1] What is cancer?. MNT Knowledge Center; 2014, http://www.medicalnewstoday.com/info/ cancer-oncology/ [accessed December 2014] [online].
  • [2] Consensus document for management of breast cancer. Indian Council of Medical Research; 2018, http://www.icmr.nic.in/guide/cancer/Breast_Cancer.pdf [accessed April 2018] [online].
  • [3] Zheng B, Wang X, Lederman D, Tan J, Gur D. Computer- aided detection: the effect of training databases on detection of subtle breast masses. Acad Radiol 2010;17 (11):1401–8.
  • [4] Zyout I, Czajkowska J, Grzegorzek M. Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography. Comput Med Imag Graph 2015;46(2):95–107.
  • [5] Wei J, Chan HP, Sahiner B, Zhou C, Hadjiiski LM, Roubidoux MA, et al. Computer-aided detection of breast masses on mammograms: dual system approach with two-view analysis. Med Phys 2009;36(10):4451–60.
  • [6] Masotti M, Lanconelli N, Campanini R. Computer-aided mass detection in mammography: false positive reduction via gray-scale invariant ranklet texture features. Med Phys 2009;36(2):311–6.
  • [7] Shi J, Sahiner B, Chan HP, Ge J, Hadjiiski L, Helvie MA, et al. Characterization of mammographic masses based on level set segmentation with new image features and patient information. Med Phys 2008;35(1):280–90.
  • [8] Sharma S, Khanna P. Computer-aided diagnosis of malignant mammograms using Zernike moments and SVM. J Digit Imaging 2015;28(1):77–90.
  • [9] Tan M, Pu J, Zheng B. Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model. Int J Comput Assist Radiol Surg 2014;9(6):1005–20.
  • [10] Reyad YA, Berbar MA, Hussain M. Comparison of statistical, LBP, and multi-resolution analysis features for breast mass classification. J Med Syst 2014;38(9). http://dx.doi.org/10.1007/s10916-014-0100-7.
  • [11] Pereira Jr RR, Azevedo Marques PM, Honda MO, Kinoshita SK, Engelmann R, Muramatsu C, et al. Usefulness of texture analysis for computerized classification of breast lesions on mammograms. J Digit Imaging 2007;20(3):248–55.
  • [12] Guo Q, Shao J, Ruiz VF. Characterization and classification of tumor lesions using computerized fractal-based texture analysis and support vector machines in digital mammograms. Int J Comput Assist Radiol Surg 2009;4 (1):11–25.
  • [13] Kashyap KL, Bajpai MK, Khanna P. An efficient algorithm for mass detection and shape analysis of different masses present in digital mammograms. Multimed Tools Appl 2018;77(8):9249–69.
  • [14] Bommanna Raja K, Madheswaran M, Thyagarajah KJ. A hybrid fuzzy-neural system for computer-aided diagnosis of ultrasound kidney images using prominent features. J Med Syst 2008;32(1):65–83.
  • [15] Karthikeyini C, Bommanna Raja K, Madheswaran M. Study on ultrasound kidney images using principal component analysis: a preliminary result. Proc. 4th Indian Conference on Computer Vision, Graphics Image Processing; 2004.
  • [16] Bommanna Raja K, Madheswaran M, Thyagarajah KJ. Ultrasound kidney image analysis for computerized disorder identification and classification using content descriptive power spectral features. J Med Syst 2007;31 (5):307–17.
  • [17] Bommanna Raja K, Madheswaran M, Thyagarajah KJ. Evaluation of tissue characteristics of kidney for diagnosis and classification using first order statistics and RTS invariants. Proc. International Conference on Signal Processing, Communications and Networking; 2007.
  • [18] Bommanna Raja K, Madheswaran M, Thyagarajah KJ. Analysis of ultrasound kidney images using content descriptive multiple features for disorder identification and ANN based classification. Proc. IEEE International Conference on Computing: Theory and Applications; 2007.
  • [19] Bommanna Raja K, Madheswaran M, Thyagarajah KJ. Quantitative and qualitative evaluation of US kidney images for disorder classification using multi-scale differential features. ICGST-BIME J 2007;7(1):1–8.
  • [20] Wu CH, Sun YN. Segmentation of kidney from ultrasound B-mode images with texture-based classification. Comput Meth Program Biomed 2006;84(2-3):114–23.
  • [21] Attia MW, Moustafa HD. Classification of ultrasound kidney images using PCA and neural networks. Int J Adv Comput Sci Appl 2015;6(4):53–7.
  • [22] Sharma K, Virmani J. Haralick's texture descriptors for classification of renal ultrasound images. In: Bhattacharyya S, Mukherjee A, Pan I, Dutta P, Bhaumik AK, editors. Hybrid intelligent techniques for pattern analysis and understanding. CRC Press; 2017. p. 277–309.
  • [23] Sharma K, Virmani J. Classification of renal diseases using first order and higher order statistics. Proc. 3rd International Conference on Computing for Sustainable Global Development (INDIACoM-2016); 2016.
  • [24] Sharma K, Virmani J. A decision support system for classification of normal and medical renal disease using ultrasound images: a decision support system for medical renal diseases. Int J Amb Comput Intel 2017;8(2):52–69.
  • [25] Kadah YM, Farag AA, Zurada JM, Badawi AM, Youssef ABM. Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound. IEEE Trans Med Imaging 1996;14(4):466–78.
  • [26] Yoshida H, Casalino DD, Keserci B, Coskun A, Ozturk O, Savranlar A. Wavelet-packet based texture analysis for differentiation between benign and malignant liver tumors in ultrasound images. Phys Med Biol 2003;48 (22):3735–53.
  • [27] Virmani J, Kumar V, Kalra N, Khandelwal N. SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors. J Digit Imaging 2013;26(3):530–43.
  • [28] Virmani J, Kumar V, Kalra N, Khandelwal N. Characterization of primary and secondary malignant liver lesions from B-mode ultrasound. J Digit Imaging 2013;26(6):1058–70.
  • [29] Virmani J, Kumar V, Kalra N, Khandelwal N. Prediction of liver cirrhosis based on multiresolution texture descriptors from B-mode ultrasound. Int J Conv Comput 2013;1(1):19–37.
  • [30] Virmani J, Kumar V, Kalra N, Khandelwal N. Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound. J Digit Imaging 2014;27 (4):520–37.
  • [31] Virmani J, Kumar V, Kalra N, Khandelwal N. PCA-SVM based CAD system for focal liver lesions using B-mode ultrasound images. Defence Sci J 2013;64(5):478–86.
  • [32] Virmani J, Kumar V, Kalra N, Khandelwal N. Prediction of cirrhosis from liver ultrasound B-mode images based on Laws' mask analysis. Proc. 2011 International Conference on Image Information Processing; 2011.
  • [33] Virmani J, Kumar V, Kalra N, Khandelwal N. A comparative study of computer-aided classification systems for focal hepatic lesions from B-mode ultrasound. J Med Eng Technol 2013;37(4):292–306.
  • [34] Virmani J, Kumar V, Kalra N, Khandelwal N. Prediction of cirrhosis based on singular value decomposition of gray level co-occurrence matrix and a neural network classifier. Proc. Developments in E-Systems Engineering (DeSE); 2011.
  • [35] Virmani J, Kumar V, Kalra N, Khandelwal N. SVM-based characterization of liver cirrhosis by singular value decomposition of GLCM matrix. Int J Artif Intell Soft Comput 2013;3(3):276–96.
  • [36] Virmani J, Kumar V, Kalra N, Khandelwal N. A rapid approach for prediction of liver cirrhosis based on first order statistics. Proc. 2011 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT-2011); 2011.
  • [37] Xian GM. An identification of malignant and benign liver tumors form ultrasonography based on GLCM texture features and fuzzy SVM. Expert Syst Appl 2010;37(10):6737–41.
  • [38] Lee WL, Chen YC, Hsieh KS. Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform. IEEE Trans Med Imaging 2003;22 (3):382–92.
  • [39] Wu CM, Chen YC, Hsieh KS. Texture features for classification of ultrasonic liver images. IEEE Trans Med Imaging 1992;11(1):141–52.
  • [40] Badawi AM, Derbala AS, Youssef ABM. Fuzzy logic algorithm for quantitative tissue characterization of diffuse liver diseases from ultrasound images. Int J Med Informatics 1999;55(2):135–47.
  • [41] Acharya UR, Fraust O, Molinari F, Vinitha Sree S, Junnarkar SP, Sudarshan V. Ultrasound-based tissue characterization and classification of fatty liver disease: a screening and diagnostic paradigm. Knowl-Based Syst 2015;75:66–77.
  • [42] Sujana H, Swarnamani S, Suresh S. Application of artificial neural networks for the classification of liver lesions by image texture parameters. Ultrasound Med Biol 1996;22 (2):1177–81.
  • [43] Andrade A, Silva JS, Santos J, Soares PB. Classifier approaches for liver steatosis using ultrasound images. Proc Technol 2012;5:763–70.
  • [44] Chen DR, Chang RF, Huang YL. Computer-aided diagnosis applied to US of solid breast nodules by using neural networks. Radiology 1999;213(2):407–12.
  • [45] Lefebvre F, Meunier M, Thibault F, Laugier P, Berger G. Computerized ultrasound B-scan characterization of breast nodules. Ultrasound Med Biol 2000;26(9):1421–8.
  • [46] Chen DR, Chang RF, Kuo WJ, Chen MC, Huang YL. Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks. Ultrasound Med Biol 2002;28(10):1301–10.
  • [47] Chang RF, Wu WJ, Moon WK, Chou YH, Chen DR. Support vector machines for diagnosis of breast tumors on US images. Acad Radiol 2003;10(2):189–97.
  • [48] Chang RF, Wu WJ, Moon WK, Chen DR. Improvement in breast tumor discrimination by support vector machines and speckle emphasis texture analysis. Ultrasound Med Biol 2003;29(5):679–86.
  • [49] Huang YL, Chen DR. Support vector machines in sonography application to decision making in the diagnosis of breast cancer. Clin Imaging 2005;29(3):179–84.
  • [50] Huang YL, Wang KL, Chen DR. Diagnosis of breast tumors with ultrasonic texture analysis using support vector machines. Neural Comput Appl 2006;15(2):164–9.
  • [51] Gomez W, Pereira WCA, Infantosi AFC. Analysis of co-occurrence texture statistics as a function of gray level quantization for classifying breast ultrasound. IEEE Trans Med Imaging 2012;31(10):1889–99.
  • [52] Yang MC, Moon WK, Wang YCF, Bae MS, Huang CS, Chen JH, et al. Robust texture analysis using multi-resolution gray-scale invariant features for breast sonographic tumor diagnosis. IEEE Trans Med Imaging 2013;32(12):2262–73.
  • [53] Zhou S, Shi J, Zhu J, Cai Y, Wang R. Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image. Biomed Signal Process Control 2013;8 (6):688–96.
  • [54] Lin CM, Hou YL, Chen TY, Chen KH. Breast nodules computer-aided diagnostic system design using fuzzy cerebellar model neural networks. IEEE Trans Fuzzy Syst 2014;22(3):693–9.
  • [55] Ardakani AA, Gharbali A, Mohammadi A. Classification of breast tumors using sonographic texture analysis. J Ultrasound Med 2015;34(2):225–31.
  • [56] Cai L, Wang X, Wang Y, Guo Y, Yu J, Wang Y. Robust phase-based texture descriptor for classification of breast ultrasound images. Biomed Eng Online 2015;14:26–46.
  • [57] Bhusri S, Jain S, Virmani J. Classification of breast lesions using the difference of statistical features. Res J Pharm Biol Chem Sci 2016;7(4):1365–72.
  • [58] Kriti, Virmani J, Agarwal R. Characterization of breast tumors using selected Laws' mask texture features. Proc. Fourth International Conference on Image Information Processing (ICIIP-2017); 2017.
  • [59] Alvarenga AV, Pereira WCA, Infantosi AFC, de Azevedo CM. Classification of breast tumors on ultrasound images using morphometric parameters. Proc. 2005 IEEE International Workshop on Intelligent Signal Processing; 2005.
  • [60] Song JH, Venkatesh SS, Conant EF, Cary TW, Arger PH, Sehgal CM. Artificial neural network to aid differentiation of malignant and benign breast masses by ultrasound imaging. Proc. of Medical Imaging: Ultrasonic Imaging and Signal Processing; 2005.
  • [61] Alvarenga AV, Infantosi AFC, Pereira WCA, Azevedo CM. Assessing the performance of morphological parameters in distinguishing breast tumors on ultrasound images. Med Eng Phys 2010;32(1):49–56.
  • [62] Marcomini KD, Caneiro AAO, Schiabel H. Development of a computer tool to detect and classify nodule in ultrasound breast images. In: Aylward S, Hadjiiski LM, editors. Medical imaging 2014: computer-aided diagnosis, vol 9035. 2014. 90351O-1–90351O-9.
  • [63] Chen CY, Chiou HJ, Chou SY, Chiou SY, Wang HK, Chou YH, et al. Computer-aided diagnosis of soft-tissue tumors using sonographic morphologic and texture features. Acad Radiol 2009;16(2):1531–8.
  • [64] Cui J, Sahiner B, Chan HP, Nees A, Paramagul C, Hadjiiski LM, et al. A new automated method for the segmentation and characterization of breast masses on ultrasound images. Med Phys 2009;36(5):1553–65.
  • [65] Takemura A, Shimizu A, Hamamoto K. Discrimination of breast tumors in ultrasonic images using an ensemble classifier based on the AdaBoost algorithm with feature selection. IEEE Trans Med Imaging 2010;29(3):598–609.
  • [66] Liao R, Wan T, Qin Z. Classification of benign and malignant breast tumors in ultrasound images based on multiple sonographic and textural features. Proc. of Third International Conference on Intelligent Human-Machine Systems and Cybernetics; 2011.
  • [67] Zakeri FS, Behnam H, Ahmadinejad N. Classification of benign and malignant breast masses based on shape and texture features in sonography images. J Med Syst 2012;36 (3):1621–7.
  • [68] Lee JH, Seong YK, Chang CH, Ko EY, Cho BH, Ku J, et al. Computer aided lesion diagnosis in B-mode ultrasound by border irregularity and multiple sonographic features. In: Novak CL, Aylward S, editors. Medical imaging 2013: computer-aided diagnosis, vol 8670. 2013. 86701O-1–86701O-7.
  • [69] Moon WK, Lo CM, Chang JM, Huang CS, Chen JH, Chang RF. Quantitative ultrasound analysis for classification of BI-RADS category 3 breast masses. J Digit Imaging 2013;26 (6):1091–8.
  • [70] Bhusri S, Jain S, Virmani J. Breast lesion classification using the amalgamation of morphological and texture features. Int J Pharma Bio Sci 2016;7(2):617–24.
  • [71] Daoud MI, Bdair TM, Al-Najar M, Alazral R. A fusion based approach for breast ultrasound image classification using multiple-ROI texture and morphological analyses. Comput Math Methods Med 2016;2016:1–12.
  • [72] Han S, Kang HK, Jeong JY, Park MH, Kim W, Bang WC, et al. A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys Med Biol 2017;62(19):7714–28.
  • [73] Chen DR, Chang RF, Chen CJ, Ho MF, Kuo SJ, Chen ST, et al. Classification of breast ultrasound images using fractal feature. J Clin Imaging 2005;29(4):235–45.
  • [74] Shi X, Cheng HD, Hu L, Ju W, Tian J. Detection and classification of masses in breast ultrasound images. Digit Signal Process 2010;20(3):824–36.
  • [75] Moon WK, Lo CM, Cho N, Chang JM, Huang CS, Chen JH, et al. Computer-aided diagnosis of breast masses using quantified BI-RADS findings. Comput Meth Programs Biomed 2013;111(1):84–92.
  • [76] Wahdan P, Saad A, Shoukry A. Comparing classification techniques to detect breast tumor. Proc. of the International Conference on Biomedical Engineering and Systems; 2014.
  • [77] Abdel-Nasser M, Melendez J, Moreno A, Omer OA, Puig D. Breast tumor classification in ultrasound images using texture analysis and super-resolution methods. Eng Appl Artif Intel 2017;59:84–92.
  • [78] Joo S, Moon WK, Kim HC. Computer-aided diagnosis of solid breast nodules on ultrasound with digital image processing and artificial neural network. Proc. of the 26th Annual International Conference of the IEEE EMBS; 2004.
  • [79] Chang RF, Wu WJ, Moon WK, Chen DR. Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors. Breast Cancer Res Treat 2005;89(2):179–85.
  • [80] Huang YL, Chen DR, Jiang YR, Kuo SJ, Wu HK, Moon WK. Computer-aided diagnosis using morphological features for classifying breast lesions on ultrasound. Ultrasound Obstet Gynecol 2008;32(4):565–72.
  • [81] Behnam H, Zakeri FS, Ahmadinejad N. Breast mass classification on sonographic images on the basis of shape analysis. J Med Ultrasonics 2010;37(4):181–6.
  • [82] Marcomini KD, Carneiro AAO, Schiabel H. Application of artificial neural network models in segmentation and classification of nodules in breast ultrasound digital images. Int J Biomed Imaging 2016;2016:1–13.
  • [83] Singh BK, Verma K, Thoke AS. Fuzzy cluster based neural network classifier for classifying breast tumors in ultrasound images. Expert Syst Appl 2016;66:114–23.
  • [84] Wu WJ, Moon WK. Ultrasound breast tumor image computer-aided diagnosis with texture and morphological features. Acad Radiol 2008;15(7):873–80.
  • [85] Su Y, Wang Y, Jiao J, Guo Y. Automatic detection and classification of breast tumors in ultrasonic images using texture and morphological features. Open Med Inform J 2011;5(Suppl. 1):26–37.
  • [86] Wu WJ, Lin SW, Moon WK. Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images. Comput Med Imaging Graph 2012;36 (8):627–33.
  • [87] Flores WG, Pereira WCA, Infantosi AFC. Improving classification performance of breast lesions on ultrasonography. Pattern Recogn 2015;48(4):1125–36.
  • [88] Prabusankarlal KM, Thirumoorthy P, Manavalan R. Assessment of combined textural and morphological features for diagnosis of breast masses in ultrasound. Hum-cent Comput Inform Sci 2015;5:12–28.
  • [89] Wu WJ, Lin SW, Moon WK. An artificial immune system- based support vector machine approach for classifying ultrasound breast tumor images. J Digit Imaging 2015;28 (5):576–85.
  • [90] http://ultrasoundcases.info/category.aspx?cat=67 [accessed December 2016].
  • [91] Burckhardt CB. Speckle in ultrasound B-mode scans. IEEE Trans Sonics Ultrasonics 1978;SU-25(1):1–6.
  • [92] Loizou CP, Pattichis CS. Despeckle filtering algorithms and software for ultrasound imaging. Synthesis lectures on algorithms and software for engineering. San Rafael, CA, USA: Claypool Publishers; 2008.
  • [93] Zhang J, Wang C, Chang Y. Comparison of despeckled filters for breast ultrasound images. Circuits Syst Signal Process 2015;34(1):185–208.
  • [94] Gupta D, Anand RS, Tyagi B. Despeckling of ultrasound images of bone fracture using M-band ridgelet transform. Optik 2014;125:1417–22.
  • [95] Manth N, Virmani J, Kumar V, Kalra N, Khandelwal N. Despeckle filtering: performance evaluation for malignant focal hepatic lesions. Proc. 2nd International Conference on Computing for Sustainable Global Development; 2015.
  • [96] Norouzi A, Mohd Rahim MS, Altameem A, Saba T, Rad AE, Rehman A, et al. Medical image segmentation methods, algorithms, and applications. IETE Techn Rev 2014;31 (3):199–213.
  • [97] Horsch K, Giger ML, Venta LA, Vyborny CJ. Automatic segmentation of breast lesions on ultrasound. Med Phys 2001;28(8):1652–9.
  • [98] Shan J, Cheng HD, Wang Y. A novel segmentation method for breast ultrasound images based on neutrosophic I-mean clustering. Med Phys 2012;39(9):5669–82.
  • [99] Mahesan KV, Bhargavi S, Jayadevappa D. Segmentation of MR images using active contours: methods, challenges and applications. Int J Innov Res Adv Eng 2017;2(4):13–21.
  • [100] Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 2011;20(7):2007–16.
  • [101] Lotfollahi M, Gity M, Ye JY, Mahlooji Far A. Segmentation of breast ultrasound images based on active contours using neutrosophic theory. J Med Ultrasonics 2017. http://dx.doi.org/10.1007/s10396-017-0811-8.
  • [102] Lu R, Shen Y. Automatic ultrasound image segmentation by active contour model based on texture. Proc. 1st International Conference on Innovative Computing, Information and Control; 2006.
  • [103] Qian X, Wang J, Guo S, Li Q. An active contour model for medical image segmentation with application to brain CT image. Med Phys 2013;40(2). 021911-1–021911-10.
  • [104] Chalana V, Linker DT, Haynor DR, Kim Y. A multiple active contour model for cardiac boundary detection on echocardiographic sequences. IEEE Trans Med Imaging 1996;15(3):290–8.
  • [105] Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Processing 2001;10(2):266–77.
  • [106] Sachdeva J, Kumar v, Gupta I, Khandelwal N, Ahuja CM. A novel content-based active contour model for brain tumor segmentation. Med Reson Imaging 2012;30(5):694–715.
  • [107] Yazdanpanah A, Hamarnesh G, Smith BR, Sarunic MV. Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. IEEE Trans Med Imaging 2011;30(2):484–96.
  • [108] Shah S, Abaza A, Ross A, Ammar H. Automatic tooth segmentation using active contour without edges. 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium; 2006.
  • [109] Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS. Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers. Multimed Tools Appl 2017;76(18):19057–85.
  • [110] Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS. Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukaemia. Biocybern Biomed Eng 2017;37(4):637–54.
  • [111] Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS. Application of ensemble artificial neural network for the classification of white blood cells using microscopic blood images. Int J Comput Syst En 2018;4(2-3):202–16.
  • [112] Wang H, Roa AC, Basavanhally AN, Gilmore HL, Shih N, Feldman M, et al. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J Med Imaging 2014;1(3). http://dx.doi.org/10.1117/1.JMI.1.3.034003.
  • [113] Tabesh A, Teverovskiy M, Pang HY, Kumar VP, Verbel D, Kotsianti A, et al. Multifeature prostate cancer diagnosis and gleason grading of histological images. IEEE Trans Med Imaging 2007;26(1):1366–78.
  • [114] Gonzalez RC, Woods RE, Eddins SL. Digital image processing using MATLAB. Pearson; 2002.
  • [115] Kriti, Virmani J, Thakur S. Application of statistical features for breast tissue density classification. In: Awad A, Hassaballah M, editors. Image feature detectors and descriptors. Cham: Springer; 2016. p. 411–35.
  • [116] Haralick RM, Shanmugam K, Dinstien I. Textural features for image classification. IEEE Trans Syst Man Cybern 1973; SMC-3(6):610–21.
  • [117] Chu A, Sehgal CM, Greenleaf JF. Use of gray value distribution of run lengths for texture analysis. Pattern Recogn Lett 1990;11(6):415–9.
  • [118] Laws KI. Rapid texture identification. Proceedings of SPIE Image Processing for Missile Guidance; 1980.
  • [119] Kriti, Virmani J. Breast density classification using Laws' mask texture features. Int J Biomed Eng Technol 2015;19 (3):279–302.
  • [120] Weszka JS, Dyer CR, Rosenfeld A. A comparative study of texture measures for terrain classification. IEEE Trans Syst Man Cybern 1976;SMC-6(4):269–85.
  • [121] Kriti, Virmani J, Agarwal R. Evaluating the efficacy of Gabor features in the discrimination of breast density patterns using various classifiers. In: Dey N, Ashour A, Borra S, editors. Classification in BioApps: automation in decision making. Springer; 2018. p. 105–31.
  • [122] Lee CC, Chen SH. Gabor wavelets and SVM classifier for liver diseases classification from CT images. Proc. IEEE International Conference on Systems, Man and Cybernetics; 2006.
  • [123] George DN, Jehlol HB, Oleiwi ASA. Brain tumor detection using shape features machine learning algorithms. Int J Sci Eng Res 2015;6(12):454–9.
  • [124] Chan HP, Sahiner B, Lam KL, Petrick N, Helvie MA, Goodsitt AA, et al. Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces. Med Phys 1998;25(10):2007–19.
  • [125] Taware PR, Nandkumar B. Content based image retrieval using color, texture and shape features for fruit images. Int J Adv Res Electron Commun Eng 2014;3(11):1427–32.
  • [126] Chaddad A, Desroisiers C, Hassan L, Tanougast C. A quantitative study of shape descriptors from glioblastoma multiforme phenotypes for predicting survival outcome. Brit J Radiol 2016;89(1068):20160575.
  • [127] Alivar A, Danyali H, Helfroush MS. Hierarchical classification of normal, fatty and heterogeneous liver diseases from ultrasound images using serial and parallel feature fusion. Biocybern Biomed Eng 2016;36(4):696–707.
  • [128] Yang J, Yang JU, Zhang D, Lu JF. Feature fusion: parallel strategy vs. serial strategy. Pattern Recogn 2003;36(6):1369–81.
  • [129] Mangai UG, Samanta S, Das S, Chowdhury PR. A survey of decision fusion and feature fusion strategies of pattern classification. IETE Techn Rev 2010;27(4):293–307.
  • [130] Amendolia SR, Cossu G, Ganadu ML, Golosio B, Masala GL, Mura GM. A comparative study of K-nearest neighbour, support vector machine and multi-layer perceptron for thalassemia screening. Chemometr Intell Lab Syst 2003;69 (1-2):13–20.
  • [132] Kriti, Virmani J, Dey N, Kumar V. PCA-NN and PCA-SVM based CAD systems for breast density classification. In: Hassanien AE, et al., editors. Applications of intelligent optimization in biology and medicine. Springer; 2016. p. 159–80.
  • [133] Kriti, Virmani J. Comparison of CAD systems for three class breast tissue density classification using mammographic images. In: Dey N, et al., editors. Medical imaging in clinical applications. Springer; 2016. p. 107–30.
  • [134] Chang CC, Lin CJ. LIBSVM: a library of support vector machines; 2014, Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm [accessed October 2014].
  • [135] Raha P, Menon RV, Chakrabarti I. Fully automated computer aided diagnosis system for classification of breast mass from ultrasound images. Proc. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET); 2017.
  • [136] Nemat H, Fehri H, Ahmadinejad N, Fragi AF, Gooya A. Classification of breast lesions in ultrasonography using sparse logistic regression and morphology-based texture features. Med Phys 2018. http://dx.doi.org/10.1002/mp.13082.
  • [137] Lee JS. Digital image smoothing and sigma filter. Comput Vis Graph Image Process 1983;24(2):255–69.
  • [138] Chang SG, Yu B, Vettereli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Tran Image Process 2000;9(9):1532–46.
  • [139] Aja-Fernández S, AlberolaLópez C. On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans Image Process 2006;15(9):2694–701.
  • [140] Mateo JL, Fernandez-Caballero A. Finding out general tendencies in speckle noise reduction in ultrasound images. Expert Syst Appl 2009;36(4):7786–97.
  • [141] Biradar N, Dewal ML, Rohit MK. Speckle noise reduction in B-mode echocardiographic images: a comparison. IETE Techn Rev 2015. http://dx.doi.org/10.1080/02564602.2015.1031714.
  • [142] Sudarshan VK, Mookiah MRK, Acharya UR, Chandran V, Molinari F, Fujita H, et al. Application of wavelet techniques for cancer diagnosis using ultrasound images: a review. Comput Biol Med 2016;69:97–111.
  • [143] Acharya UR, Sree SV, Rama Krishanan MM, Molinari F, Saba L, Ho SYS, et al. Atheroscleosis risk stratification strategy for carotid arteries using texture-based features. Ultrasound Med Biol 2012;38(6):899–915.
  • [144] Acharya UR, Raghavendra U, Fujita H, Hagiwara Y, Koh JEW, Hong TJ, et al. Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Med Biol 2016;79:250–8.
  • [145] Faust O, Acharya UR, Meiburger KM, Molinari F, Koh JEW, Yeong CH, et al. Comparative assessment of texture features for the identification of cancer in ultrasound images: a review. Biocybern Biomed Eng 2018;38(2):75–296.
  • [146] Acharya UR, Faust O, Sree SV, Molinari F, Garberoglio R, Suri JS. Cost-effective and non-invasive automated benign and malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of ThyroScanTM algorithms. Technol Cancer Res Treat 2011;10(4):371–80.
  • [147] Mookiah MRK, Acharya UR, Martis RJ, Chua CK, Lim CM, Ng EYK, et al. Evolutionary algorithms based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach. Knowl-Based Syst 2013;39:9–22.
  • [148] Chang T, Kuo CCJ. Texture analysis and classification with tree-structured wavelet transform. IEEE Trans Image Process 1993;2(4):429–41.
  • [149] Singh M, Singh S, Gupta S. A new measure of echogenicity of ultrasound images for liver classification. Proc. 24th IEEE Canadian Conference, CCECE-2011; 2011.
  • [150] Fukunaga K. Introduction to statistical pattern recognition. Academic Press; 2013.
  • [151] Maiti D. Dimension reduction and classification using PCA and factor analysis – a short overview; 2009, https://pdfs.semanticscholar.org/presentation/c95b/ a112cfbbb2842ad3edb21c80acf1871bef82.pdf [accessed August 2018] [online].
  • [152] Deluzio KJ, Astephen JL. Biomechanical features of gait waveform data associated with knee osteoarthritis. An application of principal component analysis. Gait Posture 2007;25:86–93.
  • [153] Lin WM, Yuan X, Yuen P, Wei WI, Sham J, Shi PC, et al. Classification of in vivo auto fluorescence spectra using support vector machines. J Biomed Optics 2004;9(1):180–6.
  • [154] Wang JS, Chiang WC, Hsu YL, Yang YTC. ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing 2013;116:38–45.
  • [155] Xie S, Jin F, Krishnan S, Sattar F. Signal feature extraction by multi-scale PCA and its application to respiratory sound classification. Med Biol Eng Comput 2012;50:759–68.
  • [156] Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT. Sci Rep 2016;6:24454.
  • [157] Kriti, Virmani J, Agarwal R. Assessment of despeckle filtering algorithms for segmentation of breast tumors from ultrasound images. Biocybern Biomed Eng 2019;39:100–21.
  • [158] R Core Team. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013, http://w.R-project.org/.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
PL
W opisie bibliograficznym brak poz. 131
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fecef45-3141-476b-a309-0b66a4d8983e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.