PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selection of batch process conditions for microbiologicalproduction of lactic acid using waste whey

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research was focused on the selection of the best conditions for the lactic acid production.As the organic source diluted waste whey was used. Two facultative anaerobic bacteria strains wereexamined:Lactobacillus rhamnosusandLactococcus lactis. The neeed of anaerobic conditions as wellas mineral supplementation of cultivation were investigated. It turned out that the oxidation was not thekey parameter, but cultivation medium needed a supplementation for higher process efficiency. Finally,Lactobacillus rhamnosusstrain was selected, for which LA production was app. 45% higher than forLc. lactis. On the other hand,Lactobacillus rhamnosuswas active at higher lactose concentration, thuswaste whey needed to be less diluted. Additionally, high values of product/substrate yield coefficientmake the process very efficient.
Rocznik
Strony
67--–76
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Wroclaw University of Technology, Faculty of Chemistry, Division of Bioprocess and BiomedicalEngineering, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
autor
  • Wroclaw University of Technology, Faculty of Chemistry, Division of Bioprocess and BiomedicalEngineering, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • 1. Ahmed T., Kanwal R., Ayub N., 2006. Influence of temperature on growth pattern of Lactococcus lactis, Streptococ-cus cremoris and Lactobacillus acidophilus isolated from Camel milk.Biotechnology, 5, 481–488. DOI: 10.3923/biotech.2006.481.488.
  • 2. Akerberg C., Hofvendahl K., Zacchi G., Hahn-Hägerdal B., 1998. Modelling the influence of pH, temperature,glucose and lactic acid concentrations on the kinetics of lactic acid production byLactococcus lactisssp.lactisATCC 19435 in whole-wheat flour.Appl. Microbiol. Biotechnol., 49, 682–690. DOI: 10.1007/s002530051232.
  • 3. Chaisu K., Linton Charles A., Guu Y. K., Yen T. B., Chiu C. H., 2014. Optimization lactic acid production frommolasses renewable raw material through response surface methodology with Lactobacillus Casei M-15.APCBEEProcedia, 8, 194–198. DOI: 10.1016/j.apcbee.2014.03.026.
  • 4. Chen J., Shen J., Solem C., Jensen P. R., 2013. Oxidative stress at high temperatures inlactococcus lactisdue to aninsufficient supply of riboflavin.App. Environ. Microbiol., 79, 6140–6147. DOI: 10.1128/AEM.01953-13.
  • 5. Claesson M.J., van Sinderen D., O’Toole P.W., 2008.Lactobacillusphylogenomics–towards a reclassification ofthe genus.Int. J. Syst. Evol. Microbiol., 58, 2945–2954. DOI: 10.1099/ijs.0.65848-0.
  • 6. Edward-Jones V., 2016.Essential microbiology for wound care.Oxford University Press, United Kingdom.
  • 7. De Man J.C., Rogosa M., Sharpe E.M., 1960. A medium for the cultivation of lactobacilli.J. Appl. Bacteriol., 23,30–35. DOI: 10.1111/j.1365-2672.1960.tb00188.x.
  • 8. Drider D., Bekal S., Prévost H., 2004. Genetic organizationand expression of citrate permease in lactic acidbacteria.Genet. Mol. Res., 3, 273–281.
  • 9. Ganzle M.G., 2015. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and foodspoilage.Curr. Opin. Food Sci., 2, 106–117. DOI: 10.1016/j.cofs.2015.03.001.
  • 10. Gonzalez-Chavez S.A., Arevalo-Gallegos S.,Rason-CruzQ., 2009.Lactoferrin: structure, function and applications.Int. J. Antimicrob. Agents, 33, 301.e1–301.e8. DOI: 10.1016/j.ijantimicag.2008.07.020.
  • 11. Hofvendahl K., Hahn-Hägerdal B., 2000. Factors affecting the fermentative lactic acid production from renewableresources.Enzyme Microb. Technol., 26, 87–107. DOI: 10.1016/S0141-0229(99)00155-6.
  • 12. Jalil R., Nixon J.R., 1990. Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: problemsassociated with preparative techniques and release properties.J. Microencapsulation:Micro Nano Carriers, 7,297–325. DOI: 10.3109/02652049009021842.
  • 13. Lawrence A. J., 1970. A rapid method of estimation of lactic acid in skim milk powder.Aust. J. Dairy Technol.,25(4), 198–200.
  • 14. Lech M., Trusek-Holownia A., 2015. Biodegradation of whey waste on a continuous stirred – tank bioreactor.Environ. Prot. Eng., 41 (4), 97–108. DOI: 10.5277/epe150408.
  • 15. Kok F.S., Muhamad I. I, Lee C.T., Razali F., Pa’e N., Shaharuddin S., 2012. Effects of pH and temperature on thegrowth andβ-glucosidase activity ofLactobacillus rhamnosusNRRL 442 in anaerobic fermentation.Int. Rev.Chem. Eng., 4, 293–299. DOI: 10.1016/j.fbp.2009.04.001.
  • 16. Kwon S., Yoo I., Gi Lee W., Chang N., Chang Y.K., 2001. High-rate continuous production of lactic acidbyLactobacillus rhamnosusin a two-stage membrane cell-recycle bioreactor.Biotechnol. Bioeng., 73, 25–34.DOI: 10.1002/1097-0290(20010405)73.
  • 17. Miller C.N., 1959.Use of dinitrosalicyle acid reagent for determination of reducing sugar.Anal. Chem., 81, 426–428.DOI: 10.1021/ac60147a030.
  • 18. Monod J., 1949. The growth of bacterial cultures.Annu. Rev. Microbiol., 3, 371–394. DOI: 10.1146/annurev.mi.03.100149.002103.
  • 19. Narayanan N., Roychoudhury P. K., Srivastava A., 2004. L(+)lactic acid fermentation and its product polymeriza-tion.Electron. J. Biotechnol., 7, 167–179. DOI: 10.2225/vol7-issue2-fulltext-7.
  • 20. Rattanachaikunsopon P., Phumkhachorn P., 2010. Lactic acid bacteria: their antimicrobial compounds and theiruses in food production.Ann. Biol. Res., 1 (4), 218–1228.
  • 21. Rinn J.C., Morr C.V., Seo A., Surak J.G., 1990. Evaluation ofnine semi-pilot scale whey pretreatment modificationsfor producing whey protein concentrate.J. Food Sci., 55, 510–515. DOI: 10.1111/j.1365-2621.1990. tb06798.x.
  • 22. Smith W.P., 1996. Epidermal and dermal effects of topical lactic acid.J. Am. Acad. Dermatol., 35, 388–391.DOI: 10.1016/S0190-9622(96)90602-7.
  • 23. Trusek-Holownia A., Noworyta A., 2015. Two-step treatmentof harmful industrial wastewater: an analysis ofmicrobial reactor with integrated membrane retention for benzene and toluene removal.Pol. J. Chem. Technol.,17, 4, 15–22. DOI: 10.1515/pjct-2015-0063.
  • 24. Wang Y., Tashiro Y., Sonomoto K., 2015. Fermentative production of lactic acid from renewable materials: Recentachievements, prospects, and limits.J. Biosci. Bioeng., 119, 10–18. DOI: 10.1016/j.jbiosc.2014.06.003.
  • 25. Zhang X.W., Gong X.D., Chen F., 1999. Dynamics and stabilityanalysis of the growth and astaxanthin productionsystem ofHaematococcus pluvialis.J. Ind. Microbiol. Biotechnol., 23, 133–137. DOI: 10.1038/sj.jim.2900704.
  • 26. Valík L., Medveďová A., Čižniar M., Liptáková D., 2013. Evaluation of temperature effect on growth rate ofLactobacillus rhamnosusGG in milk using secondary models.Chem. Pap., 67, 737. DOI: 10.2478/s11696-013-0365-1.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fea0ae6-4214-4cda-91ef-cd099bfeaf27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.