PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimisation of a Nacelle Electro-Thermal Ice Protection System for Icing Wind Tunnel Testing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aircraft are equipped with ice protection systems (IPS), to avoid, delay or remove ice accretion. Two widely used technologies are the thermo-pneumatic IPS and the electro-thermal IPS (ETIPS). Thermopneumatic IPS requires air extraction from the engine negatively affecting its performances. Moreover, in the context of green aviation, aircraft manufacturers are moving towards hybrid or fully electric aircraft requiring all electric on-board systems. In this work, an ETIPS has been designed and optimised to replace the nacelle pneumatic-thermal system. The aim is to minimise the power consumption while assuring limited or null ice formation and that the surface temperature remains between acceptable bounds to avoid material degradation. The design parameters were the length and heat flux of each heater. Runback ice formations and surface temperature were assessed by means of the in-house developed PoliMIce framework. The optimisation was performed using a genetic algorithm, and the constraints were handled through a linear penalty method. The optimal configuration required 33% less power with respect to the previously installed thermo-pneumatic IPS. Furthermore, engine performance is not affected in the case of the ETIPS. This energy saving resulted in an estimated reduction of specific fuel consumption of 3%, when operating the IPS in anti-icing mode.
Rocznik
Strony
32--44
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wzory
Twórcy
  • Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa, 34, 20156 Milano, Italy
  • Leonardo S.p.a., Piazza Monte Grappa, 4, 00195 Rome, Italy
  • Leonardo S.p.a., Piazza Monte Grappa, 4, 00195 Rome, Italy
  • Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa, 34, 20156 Milano, Italy
Bibliografia
  • [1] Cole, J. and Sand, W. „Statistical Study of Aircraft Icing Accidents”. Proceedings 29th Aerospace Sciences Meeting. p. 558. 1991. Reno, Nevada (USA).
  • [2] Jones, S.M., Reveley, M.S., Evans, J.K., and Barrientos, F.A. „Subsonic Aircraft Safety Icing Study.” NASA/TM-2008-215107. (No. L-19435). 2008.
  • [3] Lou, D. and Hammond, D.W. „Heat and Mass Transfer for Ice Particle Ingestion Inside Aero-Engine.” ASME. Journal of Turbomachinery, July 2011; 133(3): 031021. DOI 10.1115/1.4002419.
  • [4] Al-Khalil, K., Horvath, C., Miller, D., Wright, W., Al-Khalil, K., Horvath, C., Miller, D., and Wright, W. „Validation of Nasa Thermal Ice Protection Computer Codes. III-the Validation of Antice.” Proceedings 35th Aerospace Sciences Meeting and Exhibit. p. 51, 1997. Reno, Nevada (USA).
  • [5] Beaugendre, H., Morency, F., and Habashi, W.G. „FENSAP-ICE’s Three-Dimensional In-Flight Ice Accretion Module: ICE3D.” Journal of Aircraft Vol. 40, No. 2 (2003): pp. 239-247.
  • [6] Gutiérrez, B.A., Della Noce, A., Gallia, M., and Guardone, A. “Optimization of a Thermal Ice Protection System by Means of a Genetic Algorithm.” Proceedings International Conference on Bioinspired Methods and Their Applications: pp. 189-200. Springer, 2020. Brussels, Belgium.
  • [7] da Silva, G.A.L., de Mattos Silvares, O., and de Jesus Zerbini, E.J.G. „Numerical Simulation of Airfoil Thermal Anti-Ice Operation, Part 1: Mathematical Modelling.” Journal of Aircraft Vol. 44, No. 2 (2007): pp. 627-633.
  • [8] da Silva G.A.L., de Mattos Silvares, O., and Zerbini, E.J.G.J. „Numerical Simulation of Airfoil Thermal Anti-Ice Operation, Part 2: Implementation and Results.” Journal of Aircraft Vol. 44, No. 2 (2007): pp. 634-641.
  • [9] Bu, X., Lin, G., Yu, J., Yang, S., and Song, X. „Numerical Simulation of an Airfoil Electrothermal Anti Icing System.” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering Vol. 227, No. 10 (2013): pp. 1608-1622.
  • [10] Pourbagian, M. and Habashi, W.G. „Surrogate-Based Optimization of Electrothermal Wing Anti-Icing Systems.” Journal of Aircraft Vol. 50, No. 5 (2013): pp. 1555-1563.
  • [11] Pourbagian, M., Talgorn, B., Habashi, W.G., Kokkolaras, M., and Le Digabel, S. „Constrained Problem Formulations for Power Optimization of Aircraft Electro-Thermal Anti-Icing Systems.” Optimization and Engineering Vol. 16, No. 4 (2015): pp. 663-693.
  • [12] Pellissier, M., Habashi, W., and Pueyo, A. „Optimization Via FENSAP-ICE of Aircraft Hot-Air Anti-Icing Systems.” Journal of Aircraft Vol. 48, No. 1 (2011): pp. 265-276.
  • [13] Economon, T.D., Palacios, F., Copeland, S.R., Lukaczyk, T.W., and Alonso, J.J. “SU2: An Open-Source Suite for Multiphysics Simulation and Design.” Aiaa Journal Vol. 54, No. 3 (2016): pp. 828-846.
  • [14] Silva, G., Silvares, O., Zerbini, E., Hefazi, H., Chen, H.H., and Kaups, K. „Differential Boundary Layer Analysis and Runback Water Flow Model Applied to Flow Around Airfoils with Thermal Anti-Ice.” Proceedings 1st AIAA Atmospheric and Space Environments Conference. p. 3967, 2009. San Antonio, Texas (USA).
  • [15] Bellosta, T., Parma, G., and Guardone, A. „A robust 3D Particle Tracking Solver for In-Flight Ice Accretion Using Arbitrary Precision Arithmetic.” Proceedings 8th International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2019. pp. 622-633. CIMNE, 2021. Sitges, Catalonia, Spain.
  • [16] Gutiérrez, B.A., Della Noce, A., Gallia, M., Bellosta, T., and Guardone, A. „Numerical Simulation of a Thermal Ice Protection System Including State-of-the-Art Liquid Film Model.” Journal of Computational and Applied Mathematics Vol. 391 (2021): p. 113454.
  • [17] Gori, G., Zocca, M., Garabelli, M., Guardone, A., and Quaranta, G. „Polimice: A Simulation Framework for Three Dimensional Ice Accretion.” Applied Mathematics and Computation Vol. 267 (2015): pp. 96-107.
  • [18] Myers, T.G. and Charpin, J.P. „A Mathematical Model for Atmospheric Ice Accretion and Water Flow on a Cold Surface.” International Journal of Heat and Mass Transfer Vol. 47, No. 25 (2004): pp. 5483-5500.
  • [19] CS-EASA, Certification Specification and Acceptable Means of Compliance for Large Airplane-Amendment 25.
  • [20] CS-EASA, Certification Specification for Engine-Amendment 3.
  • [21] Cavazzuti, M. „Optimization Methods: from Theory to Design Scientific and Technological Aspects in Mechanics.” Berlin, Heidelberg, Springer Berlin Heidelberg. 2012. ISBN 9783642311871. p.121-127.
  • [22] Deb, K. and Agrawal, S. „Understanding Interactions Among Genetic Algorithm Parameters.” Foundations of Genetic Algorithms Vol. 5, No. 5 (1999): pp. 265-286.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fe4c530-e56a-4d0b-8ed1-94500f0dac60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.