PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical Composition, Morphology and Tensile Properties of Spanish Broom (Spartium junceum L.) Fibres in Comparison with Flax (Linum usitatissimum L.)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Skład chemiczny, morfologia i właściwości wytrzymałościowe włókien z żarnowca (Spartium junceum) w porównaniu z lnem
Języki publikacji
EN
Abstrakty
EN
Flax has been usually used to produce natural cellulose fibres with properties suitable for composite, textile, and other high-value fibrous applications. Spanish Broom, extracted by a physical-chemical process, is a source of cellulose fibres that can be used, as well as flax, in various fields (textile, paper, composites etc.). The aim of this study was to describe the chemical composition, morphology and tensile properties of Spanish Broom fibres in comparison with flax. The morphology of both fibres was established by optical microscopy (OM). The chemical composition and tensile properties of Spanish Broom fibres were determined according to conventional methods. The results show that Spanish Broom fibres have a higher cellulose content (91.7%) and better tensile properties than flax fibres. Moreover, Spanish Broom fibres have a smaller diameter (7-10 μm) than flax (17-24 μm), as observed by OM, and the cross-sections show an irregular polygonal shape with well defined lumen. Spanish Broom fibres were found to have very good tensile properties as well as thermal stability and could successfully replace flax in many applications.
PL
Len jest zazwyczaj używany do produkcji włókien naturalnych celulozowych o właściwościach odpowiednich do wyrobów tekstyliów, kompozytów, papieru i innych produktów o wysokich walorach użytkowych. Żarnowiec ekstrahowany w procesie fizyko-chemicznym jest źródłem włókien celulozowych, które mogą być stosowane podobnie jak len. Celem pracy było porównanie składu chemicznego, morfologii i cech wytrzymałościowych z lnem. Morfologię włókien badano za pomocą mikroskopu optycznego, skład chemiczny i wytrzymałość badano metodami konwencjonalnymi. Wyniki wskazują, że włókna żarnowca mają większą zawartość celulozy (91,7%) i lepszą wytrzymałość mechaniczną. Włókna te maja mniejszą średnice (7-10 µm podczas gdy len ma 17-24 µm), przekrój cechuje nieregularny wieloboczny kształt z wyraźnym lumenem. Włókna żarnowca mają dobrą wytrzymałość i stabilność termiczną i mogą z powodzeniem zastąpić len w wielu zastosowaniach.
Rocznik
Strony
25--28
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Italy, Bologna, Bologna University,, Department of Pharmacy and Biotechnology Chidichimo Giuseppe
  • Italy, Arcavacata di Rende, Calabria University, Department of Chemistry Rondi Giorgio
  • Italy, Bergamo, Linificio & Canapificio Nazionale
autor
  • Italy, Arcavacata di Rende, Calabria University, Department of Chemistry
autor
  • Italy, Arcavacata di Rende, University of Calabria, Department of Scienze della Terra
autor
  • Italy, Bologna, Bologna University,, Department of Pharmacy and Biotechnology
autor
  • Italy, Bologna, Bologna University,, Department of Pharmacy and Biotechnology
Bibliografia
  • 1. Liu Z, Erhan SZ, Akin DE, Barton FE. “Green” composites from renewable resources: preparation of epoxidized soyben oil and flax fiber composites. J. Agric. Food Chem. 2006; 54: 2134-2137.
  • 2. Arbelaiz A, Fernàndez B, Ramos JA, Retegi A, Llano-Ponte R, Mondragon I. Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Comput. Sci. Technol. 2005; 65: 1582-1592.
  • 3. Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninck G, Sarkissova M. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing 2003; 34: 253-266.
  • 4. Fung KL, Xing XS, Li RKY, Tjong SC, Mai YW. An investigation on the processing of sisal reinforced polypropylene composites. Comput. Sci. Technol. 2003; 63: 1255-1258.
  • 5. Raya D, Sarkara BK, Ranab AK, Bose NR. The mechanical properties of vinyl ester resin matrix composites reinforced with alkali-treated jute fibres. Composites Part. A: Applied Science and Manufacturing 2001; 32: 119-127.
  • 6. Mwaikambo LY, Ansell MP. Chemical modification of hemp, sisal, jute and kapok fibers by alkalization. J. Appl. Polym. Sci. 2002; 84: 2222-2234.
  • 7. Eichorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM. Current international research into cellulosic fibres and composites. J. Mat. Sci. 2001; 36: 2107-2131.
  • 8. Baley C. Analysis of flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composites 2002; Part A, 33: 939-948.
  • 9. Nechwatal A, Mieck K-P, Reussmann T. Developments in the characterization of natural fibre properties and in the use of natural fibres for composites. Composites Part. A: Applied Science and Manufacturing 2003; 63: 1273-1279.
  • 10. Kymäläinen H-R, Sjӧberg A-M. Flax and hemp fibres as raw materials for thermal insulations. Building and Environment 2008; 43: 1261-1269.
  • 11. Brigida AIS, Calado VMA, Goncalves LRB, Coelho MAZ. Effect of chemical treatments on properties of green coconut fiber. Carb. Polym. 2010; 79: 832-838.
  • 12. Wambua P, Ivens R, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Composites Part. A: Applied Science and Manufacturing 2003; 63: 1259-1264.
  • 13. Herrera-Franco PJ, Valadez-Gonzalez A. Mechanical properties of continuous natural fibre-reinforced polymer composites. Composites Part. A: Applied Science and Manufacturing 2004; 35: 339-345.
  • 14. Foulk JA, Chao NY, Akin DE, Dodd RB, Layton PA. Analysis of flax and cotton fiber fabric blends and recycled polyethylene composites. Journal of Polymers and the Environment 2006; 14, 1: 15-25.
  • 15. Gabriele B, Cerchiara T, Salerno G, Chidichimo G, Vetere MV, Alampi C, Gallucci MC, Conidi C, Cassano A. A new physical-chemical process for the efficient production of cellulose fibers from Spanish broom (Spartium junce- Received 28.11.2012 Reviewed 18.09.2013 um L.). Bioresour. Technol. 2010; 101: 724-729.
  • 16. Updegraff DM. Semimicro determination of cellulose in biological materials. Analytical Biochemistry 1969; 32: 420-424.
  • 17. TAPPI T 223 hm 84. 1984. Pentosans in wood and pulp. TAPPI Press: Norcross, GA, U.S.A.
  • 18. TAPPI T222 om-02. 2002. Acid insoluble lignin in wood and pulp. TAPPI Press: Norcross, GA, U.S.A.
  • 19. Han JS, Rowell JS. Chemical composition of fibers. In: Paper and Composites from Agro-Based Resources (Chapter 5); Rowell, R. M.; Young R. A.; Rowell, J. K., Eds.; CRC Press: London, U.K. 1997.
  • 20. McComb EA, McCready RM. Colorimetric determination of pectic substances. Analytical Chemistry, 1952, pp. 1630- 1632.
  • 21. Medeghini Bonatti P, Ferrari C, Focher B, Grippo C, Torri G, Casentino C. Histochemical and supramolecular studies in determinino qualità of hemp fibres for textile applications. Euphytica 2004; 140: 55-64.
  • 22. Reddy N, Yang Y. Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems. Bioresour. Technol. 2007; 99: 2449–2454.
  • 23. Mussig DJ, Stevens Ch. Industrial applications of natural fibres: structure, properties and technical applications. John Wiley & Sons Ltd., 2010: 373.
  • 24. Akin EA, Epps HH, Archibald DD, Shekhar Sharma HS. Color measurement of flax retted by various means. Textile Research Journal 2000; 70, 10: 852-858.
  • 25. Kalia S, Kaith BS, Kaur I. Pretratments of natural fibers and their application as reinforcing material in polymer composites – a review. Polymer Engineering and Science 2009; 49, 7: 1253-1272.
  • 26. Paukszta D, Borysiak S. The influence of processing and the polymorphism of lignocellulosic fillers on the structure and properties of composite materials. A review. Materials 2013; 6: 2747- 2767.
  • 27. Hearle JWS, Peters RH. Fiber structure. The Textile Institute, Butterworth and Co. Ltd, London, 1963, ch.12; Morton EW, Hearle JWS. Physical properties of textile fibers. The Textile Institute, Manchester UK, ch.7, 1993.
  • 28. De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology 2010; 70, 1: 116-122.
  • 29. Chen WH, Kuo PC. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 2010; 35: 2580-86.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fe282b1-5f39-4ee4-a7bb-302ba16bdebe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.