PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advanced gas turbines health monitoring systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zaawansowany system monitorowania stanu technicznego w turbinach gazowych
Języki publikacji
EN
Abstrakty
EN
An overview of science papers in the field of machine diagnosis has exposed increasing efforts in developing accurate and reliable engine health monitoring systems. Attempts have been made in both diagnostics and prediction of system faults. Essential limitations of the standard monitoring system are discussed in this paper as well as arguments for implementation of the Advanced Gas Turbine Health Monitoring Systems. Examples of implementation are discussed and a comparison between “Enhanced Arrangement” and “Standard Arrangements” is carried out. The individual system components are implemented today using very different methods. Performance degradation of gas turbines is described here with an approach of Condition Based Maintenance and it was shown how the classification method can help to improve equipment operation. The review of signal processing methods was carried out to present strengths and shortcomings of individual methods.
PL
Przegląd literatury w dziedzinie diagnostyki maszyn wykazuje duże zainteresowanie środowiska naukowego opracowaniem niezawodnych i precyzyjnych metod oceny stanu technicznego napędów turbinowych. Prace te mają najczęściej na celu opracowanie systemów służących do bieżącej diagnostyki uszkodzeń pojawiających się podczas pracy jak i prognozowania przyszłych defektów. W artykule przeprowadzono ocenę najczęściej stosowanych metod diagnostycznych jak również omówiono zastosowanie „Zaawansowanego systemu monitorowania stanu technicznego turbin gazowych”. Przedstawione zostało porównanie standardowego i zaawansowanego układu diagnostyczno-sterującego. Indywidualne metody diagnostyczne zostały opisane wraz z przykładami zastosowania. Wykazano, że spadek sprawności turbiny gazowej jest ściśle związany z jej stanem technicznym, który może być stale monitorowany. Oceniono również wpływ metod klasyfikacji uszkodzeń na wykrywalność stopnia degradacji.
Czasopismo
Rocznik
Strony
77--87
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
autor
  • Solar Turbines Europe S.A.
autor
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera, 14, 80-231 Gdansk, Poland
Bibliografia
  • 1. Jaw LC. Recent advancements in aircraft engine health management (EHM) technologies and recommendations for the next step. Proceedings of GT2005 ASME Paper GT 2005-68625. http://dx.doi.org/10.1115/GT2005-68625
  • 2. Boyce MP, Meher-Homji CB, Wooldridge B. Condition monitoring of aeroderivative gas turbines. Gas Turbine and Aeroengine Congress and Exposition, Toronto, Ontario, Canada, 1989, ASME Paper No. 89-GT-36. http://dx.doi.org/10.1115/89- GT-36
  • 3. Tsalavoutas A, Aretakis N, Mathioudakis K, Stamatis A. Combining advanced data analysis methods for the constitution of an integrated gas turbine condition monitoring and diagnostic system. Proceedings of ASME Turbo Expo 2000, Munich, Germany. 2000, ASME Paper No 2000-GT-0034. http://dx.doi.org/10.1115/2000-GT-0034
  • 4. Rausand M. Reliability centered maintenance. Reliability Engineering and System Safety 1998;60: 121-132. https://doi.org/10.1016/S0951- 8320(98)83005-6
  • 5. Diakunchak IS. Performance deterioration in industrial gas turbines, international gas turbine and aeroengine congress and exposition. Orlando, Florida, 1991, ASME Paper No 91-GT-228. https://doi.org/10.1115/91-GT-228
  • 6. Kurz R, Brun K, Wollie M. Degradation effects on industrial gas turbines. ASME J. Eng. Gas Turbines Power. 2009; 131: 62401. https://doi.org/10.1115/1.3097135
  • 7. Kurz R, Brun K. Gas Turbine Tutorial-Maintenance and Operating Practices Effects on Degradation and Life Proceedings of 36th Turbomachinery Symposium, 2007. https://doi.org/10.21423/R15W7F
  • 8. Wong M. L. D, Jack L. B, Nandi A. K. Modified selforganising map for automated novelty detection applied to vibration signal monitoring. Mechanical Systems and Signal Processing 20, 2006, 593–610. http://dx.doi.org/10.1016/j.ymssp.2005.01.008
  • 9. Brotherton T, Jahns G, Jacobs J, Wroblewski D. Prognosis of faults in gas turbine engines. Aerospace Conference Proceedings. IEEE, 2000; 6:18-25163-171. https://doi.org/10.1109/AERO.2000.877892
  • 10. Chiang LH, Russell EL, Braatz RD. Fault detection and diagnosis in industrial systems. London, 2001. http://dx.doi.org/10.1007/978-1-4471-0347-9
  • 11. Luo J, Namburu M, Pattipati K, Qiao L, Kawamoto M, Chigusa S. Model-based prognostic techniques, proceedings of the IEEE Autotestcon, 2003:330-340. http://dx.doi.org/10.1109/AUTEST.2003.1243596
  • 12. Li YG, Nilkitsaranont P. Gas turbine performance prognostic for condition-based maintenance. Applied Energy 86, 2009, 2152-2161. https://doi.org/10.1016/j.apenergy.2009.02.011
  • 13. Mathioudakis K, Stamatis A, Tsalavoutas A, Aretakis N. Performance analysis of industrial gas turbines for engine condition monitoring. Proc. Inst. Mech. Eng., Part A. J. Power Energy. 2001;215(A2):173-184. https://doi.org/10.1243/0957650011538442
  • 14. Stamatis A, Mathioudakis K, Papailiou KD. Adaptive simulation of gas turbine performance. ASME J. Eng. Gas Turbines Power. 1989;112:168-175. http://dx.doi.org/10.1115/1.2906157
  • 15. Luppold RH, Roman JR, Gallops GW, Kerr LJ. estimating in flight engine performance variations using-kalman filter concepts. 25th Joint Propulsion Conference, Joint Propulsion Conferences, 1989. http://dx.doi.org/10.2514/6.1989-2584
  • 16. Cybenko G. Approximation by superpositions of a sigmoidal function, mathematics of control. Signals and Systems. 1989; 2(4):303-314, Springer. http://dx.doi.org/10.1007/BF02551274
  • 17. Pong-Jeu L, Ming-Chuan Z, Tzu-Cheng H, Zhang J. An evaluation of engine faults diagnostics using artificial neural networks. J. Eng. Gas Turbines Power. 2000;123(2): 340-346. http://dx.doi.org/10.1115/1.1362667
  • 18. Lazzaretto A, Toffolo A. Analytical and neural network models for gas turbine design and off-design simulation. Int. J. Appl. Thermodynam. 2001;4(4): 173-82.
  • 19. Boccaletti C, Cerri G, Seyedan B. A neural network simulator of a gas turbine with a waste heat recovery section. ASME Turbo Expo 2000 Munich, Germany, May 8-11, 2000, ASME Paper No 2000-GT-0185. http://dx.doi.org/10.1115/2000-GT-0185
  • 20. Dominiczak K, Rządkowski R, Radulski W, Szczepanik R. Online prediction of temperature and stress in steam turbine components using neural networks. J. Eng. Gas Turbines Power. 2016;138(5), ASME Paper No: GTP-15-1396. http://dx.doi.org/10.1115/1.4031626
  • 21. Kobayashi T, Simon DL. Hybrid neural-network genetic-algorithm technique for aircraft engine performance diagnostics. Journal of Propulsion and Power. 2005;21(4): 751-758. http://dx.doi.org/10.2514/1.9881
  • 22. Kanelopoulos K, Stamatis A, Mathioudakis K, Incorporating Neural Networks into Gas Turbine Performance Diagnostics, 1997, ASME paper, 97-GT-35. http://dx.doi.org/10.1115/97-GT-035
  • 23. DePold HR, Gass FD. The application of expert systems and neural networks to gas turbine prognostics and diagnostics. Trans. ASME, J. Eng. Gas Turbines Power. 1999; 121: 607-612. http://dx.doi.org/10.1115/1.2818515
  • 24. Volponi AJ, DePold H, Ganguli R, Daguang C. The use of Kalman filter and neural network methodologies in gas turbine performance diagnostics: a comparative study. ASME Turbo Expo 2000 Munich, May 8-11, 2000, ASME Paper No. 2000-GT-0547. http://dx.doi.org/10.1115/1.1419016
  • 25. Ogaji SOT, Singh R. Advanced engine diagnostics using artificial neural networks. Applied Soft Computing 3 (3), 2003, 259-271. http://dx.doi.org/10.1016/S1568-4946(03)00038-3
  • 26. Yang X, Pang S, Shen W, Lin X, Jiang K, Wang Y. Aero engine fault diagnosis using an optimized extreme learning machine. International Journal of Aerospace Engineering. 2016, Article ID 789287. http://dx.doi.org/10.1155/2016/7892875
  • 27. Palade V, Patton RJ, Uppal FJ, Quevedo J, Daley S. Fault diagnosis of an industrial gas turbine using neuro-fuzzy methods. IFAC Proceedings 2002;35(1): 471-476. http://dx.doi.org/10.3182/20020721-6-ES-1901.01632
  • 28. Verma R, Roy N, Ganguli R. Gas turbine diagnostics using a soft computing approach, Applied Mathematics and Computation. 2006; 172(2): 1342- 1363. http://dx.doi.org/10.1016/j.amc.2005.02.057
  • 29. Jardine AKS, Lin D, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing. 2006; 20(7): 1483-1510. http://dx.doi.org/10.1016/j.ymssp.2005.09.012
  • 30. Poyhonen S, Jover P, Hyotyniemi H. Signal processing of vibrations for condition monitoring of an induction motor. First International Symposium on Digital Object Identifier. 2004: 499-502. http://dx.doi.org/10.1109/ISCCSP.2004.1296338
  • 31. Al-Badour F, Sunar M, Cheded L. Vibration analysis of rotating machinery using time–frequency analysis and wavelet techniques. Mechanical Systems and Signal Processing 2011; 25(6): 2083-2101. http://dx.doi.org/10.1109/ISCCSP.2004.1296338
  • 32. Peng ZK, Chu FL. Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mechanical Systems and Signal Processing. 2004;18(2):199-221. http://dx.doi.org/10.1016/S0888-3270(03)00075-X
  • 33. Aretakis N, Mathioudakis K. Wavelet analysis for gas turbine fault diagnostics. Journal of Engineering for Gas Turbines and Power 1997;119:870-6. http://dx.doi.org/10.1115/1.2817067
  • 34. Feng Z, Liang M, Chu F, Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples. Mechanical Systems and Signal Processing. 2013; 38(1):165-205. http://dx.doi.org/10.1016/j.ymssp.2013.01.017
  • 35. Harrison GA, Koren I, Lewis M, Taylor FJ, Meltzera G, Dien NP. Application of wavelet and Wigner analysis to gas turbine vibration signal processing. Proceedings of SPIE on Wavelet Application. 1998; 3391:490-501. http://dx.doi.org/10.1117/12.304898
  • 36. Samuel PD, Pines DJ. A review of vibration-based techniques for helicopter transmission diagnostics. Journal of Sound and Vibration. 2005; 282(1-2): 475-508. http://dx.doi.org/10.1016/j.jsv.2004.02.058
  • 37. Meltzer G, Dien NP. Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude maps. Mechanical Systems and Signal Processing 2004;18(5):985-992. http://dx.doi.org/10.1016/j.ymssp.2004.01.009
  • 38. Hee LM, Leong MS. Diagnosis for loose blades in gas turbines using wavelet analysis. J. Eng. Gas Turbines Power. 2005;127(2):314-322 http://dx.doi.org/10.1115/1.1772406
  • 39. Leia Y, Hea Z, Zia Y, Hua Q. Fault diagnosis of rotating machinery based on multiple ANFIS combination with Gas. Mechanical Systems and Signal Processing. 2007;21(5):2280-2294. http://dx.doi.org/10.1115/1.1772406
  • 40. Lei Y, Zuo MJ. Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs. Measurement Science and Technology, 2009;20:125701-125712. http://dx.doi.org/10.1088/0957-0233/20/12/125701
  • 41. Peng ZK, Tse PW, Chu FL. A comparison study of improved Hilbert–Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing, Mechanical Systems and Signal Processing, 2004, 19: 974-988. http://dx.doi.org/10.1016/j.ymssp.2004.01.006
  • 42. Vachtsevanos G, Lewis FL, Roemer M, Hess A, Wu B. Intelligent fault diagnosis and prognosis for engineering systems, 2006. http://dx.doi.org/10.1002/9780470117842
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fdfece9-60cc-4930-87de-3938a8a07f3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.