PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the migration of anthropogenic pollution from active municipal landfill in groundwaters

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Landfill requires a systematic monitoring of its impact on groundwater and surface waters. The paper presents the modeling of pollution migration for cases when leachate penetrates the aquifer layer. For this purpose, a conceptual hydrodynamic model of the aquifer was developed in the program Visual ModFlow Pro, which is a spatial two-layer model. Chloride ion was used as an indicator defining the rate of pollution migration. The results of calculations and modeling of pollution migration in soil-water conditions demonstrated that it is practically impossible for pollutants to penetrate the aquifer, since a sufficient protection is provided by artificial insulation and a layer of sandy clays. A potential pollution migration to groundwater can only occur after a rupture - damage to the insulation layer. In such a case, vertical infiltration will be taking place in the 4aeration zone for a relatively long period, while the migration of pollutants already in the saturation zone (hydrated) will be taking place at a relatively high speed.
Rocznik
Strony
81--90
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
  • PhD Eng.; State University of Applied Sciences Nowy Sącz, Institute of Engineering, Zamenhofa 1A, 33-300 Nowy Sącz, Poland
Bibliografia
  • [1] Kowalski, Z., Generowicz, A.,Makara, A., Kulczycka, J. (2015). Evaluation of Municipal Waste Landfilling using the Technology Quality Assessment Method. Environment Protection Engineering, 41(4), 167-179.
  • [2] Gubanova, E., Kupinets, L., Deforzh, H., Koval, V., Gaska, K. (2019). Recycling of polymer waste in the context of developing circular economy. Architecture Civil Engineering Environment, 2(4), 99-108.
  • [3] Generowicz, A., Gaska, K., Hajduga, G. (2018). Multi-criteria Analysis of the Waste Management System in a Metropolitan Area. E3S Web of Conferences 44, 00043, EKODOK2018, 16-18.04.2018, 10th Conference on Interdisciplinary Problems in Environmental Protection and Engineering.
  • [4] Vaverková, M. B. (2019). Landfill Impacts on the Environment. Review Geosciences, 9(10), 431.
  • [5] Madon, I., Drev, D., Likar, J. (2019). Long-term risk assessments comparing environmental performance of different types of sanitary landfills. Waste Management, 96, 96-107.
  • [6] Brągoszewska, E., Biedroń, I., Hryb, W. (2019). Air quality and potential health risk impacts of exposure to bacterial aerosol in a waste sorting plant located in the mountain region of Southern Poland, around which there are numerous rural areas. Atmosphere, 10(7), 360, 1-11.
  • [7] Generowicz, N., Kulczycka, J., Partyka, M., Sługa, K. (2021). Key Challenges and Opportunities for an Effective Supply Chain System in the Catalyst Recycling Market-A Case Study of Poland. Resources 10(2), 13.
  • [8] Melnyk, A., Kuklińska, K., Wolska, L., Namieśnik, J. (2014). Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill. Environmental Research, 135, 253-261.
  • [9] Gworek, B., Dmuchowski, W., Koda, E., Marecka, M., Baczewska, A.H., Brągoszewska, P., Sieczka, A., Osiński, P. (2016). Impact of the Municipal Solid Waste Łubna Landfill on Environmental Pollution by Heavy Metals. Water, 8(10), 470.
  • [10] Smol, M.; Włodarczyk-Makuła, M,; Skowron- Grabowska B. (2017). PAHs removal from municipal landfill leachate using integrated membrane system aspect of legal regulation, Desalination Water Treatment, 69, 335-343.
  • [11] Brandl, H. (1992). Mineral liners for hazardous containment. Géotechnique, 42, 57-65.
  • [12] Rowe, R. K. (2005). Long-term performance of contaminant barrier system. Géotechnique, 55, 631-678.
  • [13] Kowalski, S. (2016). Application of dimensional analysis in the fretting wear studies. Journal of the Balkan Tribological Association, 22(4-I), 3823-3835.
  • [14] Kamura K., Hara Y., Inanc B., Yamada M., Inuoe Y., Ono Y. (2005). Effectiveness of resistivity monitoring for interpreting temporal changes in landfill properties. J. Mater. Cycles Waste Manag., 2(7), 66-70.
  • [15] Kowalski, S. (2020). Failure analysis of the elements of a forced-in joint operating in rotational bending conditions. Engineering Failure Analysis, 118, 104864.
  • [16] Kowalski, S., Cygnar, M., Cieślikowski, B. (2020). Analysis of the application of ZrN coatings for the mitigation of the development of fretting wear processes at the surfaces of push fit joint elements. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 234(8), 1208-1221.
  • [17] Ciuła, J., Gaska, K., Iljuczonek, Ł., Generowicz, A. Koval, V. (2019). Energy efficiency economics of conversion of biogas from the fermentation of sewage sludge to biomethane as a fuel for automotive vehicles. Architecture Civil Engineering Environment, 12(2), 131-140.
  • [18] Stanuch, I., Sozańska, M., Biegańska, J., Cebula, J., Nowak, J. (2020). Fluctuations of the elemental composition in the layers of mineral deposits formed on the elements of biogas engines. Scientific Reports, 10, 4244.
  • [19] Shaker, A., Yeung, W. (2010). Trail road landfill site monitoring using multi-temporal landsat satellte data. Department of civil engineering, Ryerson University, Toronto, Ontario.
  • [20] Leah, R., Johnson, M., Connor, L., Fox, W., Levene C. (2001). Dispersal of polychlorinated biphenyls from a closed landfill site. Land Contamination & Reclamation, 9(1), 1-8.
  • [21] Samadder, R., Prabhakar, R., Khan, D., Kishan, D., Chauhan, M.S. (2017). Analysis of the contaminants released from municipal solid waste landfill site: A case study. Science of The Total Environment, 580, 593-601.
  • [22] Rouholahnejad, E. Sadrnejad, S.A. (2009). Numerical simulation of leachate transport into the groundwater at landfill sites. 18th World IMACS/MODSIM Congress, Cairns, Australia.
  • [23] Berkhoff, K. (2007). Groundwater vulnerability assessment to assist the measurement planning of the water framework directive - a practical approach with stakeholders. Hydrol. Earth Syst. Sci. Discuss., 4, 1133-1151.
  • [24] Kondracki, J. (2002). Geografia regionalna Polski (Regional geography of Poland ). PWN, Warszawa.
  • [25] Oszczypko, N. Wójcik, A. (1993). Objaśnienia do szczegółowej mapy geologicznej Polski 1:50 000 (Explanations to the detailed geological map of Poland 1: 50,000). PIG Warszawa.
  • [26] Nowicki, Z. [ed.] (2009). Wody podziemne miast Polski. Miasta powyżej 50 000 mieszkańców (Groundwater in Polish cities. Cities with more than 50,000 inhabitants). PIG Warszawa.
  • [27] Bear, J., Cheng, A.H. (2010). Modeling groundwater flow and contaminant transport. London, New York: Springer Science+Buisness Media B.V.
  • [28] Marcak, H., Siemek, J. (1998). Przepływy w ośrodkach spękanych (Flows in fractured centers). Archiwum Górnictwa, 43, 457-469.
  • [29] Bear, J. (1993). Modeling flow and contaminant Transport in Fractured Rocks, [w]: Bear J., Chin-Fu Tsang, de Marsily G. (red.) Flow and Contaminant Transport in Fractured Rock, Academic Press, San Diego, New York, Berkeley, Boston, Sydney, Tokyo.
  • [30] Macioszczyk, T. (1999). Czas przesączania pionowego wody jako wskaźnik stopnia ekranowania warstw wodonośnych (Time of the vertical seepage as an indicator of the aquifers’ vulnerability). Przegląd Geologiczny, 47(8), 731-736.
  • [31] Pazdro, Z., Kozerski, B. (1990). Hydrogeologia ogólna (General hydrogeology).Wyd. Geologiczne, Warszawa.
  • [32] Witczak, S., Adamczyk, A. (1995). Katalog wybranych fizycznych i chemicznych wskaźników zanieczyszczeń wód podziemnych i metod ich oznaczania tom I-II (Catalog of selected physical and chemical indicators of groundwater pollution and methods of their determination, volumes I-II). Biblioteka Monitoringu Środowiska, Warszawa.
  • [33] Carrillo-Chávez, A., Drever, J.I., Martínez, M. (2000). Arsenic content and groundwater geochemistry of the San Antonio-El Triunfo, Carrizal and Los Planes aquifers in southernmost Baja California. Environmental Geology, 39(11), 1295-1303.
  • [34] Szczepański, A., Hałdus , A., Jastrzębski, J., Kulma, R. (1996). Badanie modelowe warunków przepływu wód podziemnych w strefach kontaktów hydraulicznych (Model study of groundwater flow conditions in hydraulic contact zones). Gospodarka Surowcami Mineralnymi, 2(2).
  • [35] Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G. (2000).MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water, Model - User Guide to Modularization Concepts and the Ground-Water Flow Process U.S. Geological Survey, Open-File Report 00-92 Reston, Virginia.
  • [36] Wysowska, E., Kicińska, A., Nikiel, G. (2020). Analysis of Natural Vulnerability of Groundwater Intakes toMigration of Surface Pollutants Based on a Selected Part of the Dunajec River Basin. Pol. J. Environ. Stud. 29, 2925-2934.
  • [37] Papadopoulou, M.P., Karatzas G.P., Bougioukou, G.G. (2007). Numerical modelling of the environmental impact of landfill leachate leakage on groundwater quality - a field application. Environmental Modeling & Assessment, 12, 43-54.
  • [38] Balcerzak, W., Generowicz, A., Mucha, Z. (2014). Application of Multi-Criteria Analysis for Selection of a Reclamation Method for a Hazardous Waste Landfill, Polish Journal of Environmental Studies, 23(3), 983-987.
  • [39] Porowska, D. (2019). Assessment Of the municipal landfill impact on groundwater at different periods of the post-closure stage (a landfill in Otwock) Biuletyn Państwowego Instytutu Geologicznego, 475, 183-190.
  • [40] Kowalski, D., Kowalska, B., Bławucki, T., Suchorab, P., Gaska, K. (2019). Impact Assessment of Distribution Network Layout on the Reliability of Water Delivery. Water, 11, 480.
  • [41] Gaska, K., Generowicz, A., Lobur, M., Jaworski, N., Ciuła, J., Mzyk ,T. (2019). Optimization of Biological Wastewater Treatment Process by Hierarchical Adaptive Control. 2019 IEEE 15th International Conference on the Perspective Technologies and Methods in MEMS Design, MEMSTECH 2019 - Proceedings, 2019, 119-122.
  • [42] Abunama, T., Othman, F., Ansari, M. El-Shafie, A. (2019). Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill. Environ Sci Pollut Res, 26, 3368-3381.
  • [43] Koval, V., Mikhno, I., Hajduga, G., Gaska, K. (2019). Economic efficiency of biogas generation from food product waste. E3S Web of Conferences, 100, 00039.
  • [44] Rolle,M., Clement, T. P., Sethi,R. (2008). DiMolfetta A. m A kinetic approach for simulating redox-controlled fringe and core biodegradation processes in groundwater: model development and application to a landfill site in Piedmont, Italy. Hydrol. Process. 22, 4905-4921.
  • [45] Ciuła, J., Kozik, V., Generowicz, A., Gaska, K., Bak, A., Paździor, M., Barbusiński, K. (2020). Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis. Energies. 13(23), 6254.
  • [46] Xi, B., Li, J., Wang, Y., Deng, Ch., Li, X., Ma, Y., Xiong, Y. (2021). Risk Assessment of Groundwater Contamination Sites. In: Investigation and Assessment Technology for Typical Groundwatercontaminated Sites and Application Cases. Singapore: Springer.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fdf38c7-1641-4706-b780-3e763a115e97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.