PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variable thermal conductivity in micropolar thermoelastic medium without energy dissipation possessing cubic symmetry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This investigation deals with the effect of variable thermal conductivity in a micropolar thermoelastic medium without energy dissipation with cubic symmetry. The normal mode technique is employed for obtaining components of physical quantities such as displacement, stress, temperature distribution and microrotation.
Twórcy
  • Department of Mathematics, University Institute of Sciences, Chandigarh University Gharuan-Mohali, Punjab, INDIA
autor
  • Department of Mathematics, I.G.N College, Ladwa, Haryana, INDIA Department of Mathematics and Humanities, Maharishi Markandeshwar (Deemed to be University) Mullana-Ambala, Haryana-133207, INDIA
Bibliografia
  • [1] Eringen A.C. and Suhubi E. (1964): Nonlinear theory of simple micro-elastic solids-I.– International Journal of Engineering Science, vol.2, No.2, pp.189-203.
  • [2] Eringen A.C. (1966): Linear theory of micropolar elasticity.– Journal of Mathematics and Mechanics, pp.909-923.
  • [3] Nowacki W. (1974a): Dynamical problems of thermo diffusion in solids I.– Bulletin of the Polish Academy of Sciences: Technical Sciences, vol.22, pp.55-64.
  • [4] Nowacki W. (1974b): Dynamical problems of thermo diffusion in solids II.– Bulletin of the Polish Academy of Sciences: Technical Sciences, vol.22, pp.129-135.
  • [5] Nowacki W. (1974c): Dynamical problems of thermo diffusion in solids III.– Bulletin of the Polish Academy of Sciences: Technical Sciences, vol.22, pp.257-266.
  • [6] Eringen A. C. (1984): Plane waves in nonlocal micropolar elasticity.– International Journal of Engineering Science, vol.22, No.8-10, pp.1113-1121.
  • [7] Kumar R. and Ailawalia P. (2007): Moving load response in micropolar thermoelastic medium without energy dissipation possessing cubic symmetry.– International journal of solids and structures, vol.44, No.11-12, pp.4068-4078.
  • [8] Othman M. I., Hasona W. M. and Abd-Elaziz E. M. (2015): Effect of rotation and initial stress on generalized micropolar thermoelastic medium with three-phase-lag.– Journal of Computational and Theoretical Nanoscience, vol.12, No.9, pp.2030-2040.
  • [9] Said S.M., Elmaklizi Y.D. and Othman M.I. (2017): A two-temperature rotating-micropolar thermoelastic medium under influence of magnetic field.– Chaos, Solitons and Fractals, vol.97, pp.75-83.
  • [10] Othman M.I. and Mondal S. (2019): Memory-dependent derivative effect on wave propagation of micropolar thermoelastic medium under pulsed laser heating with three theories.– International Journal of Numerical Methods for Heat and Fluid Flow, vol.30, No.3, pp.1025-1046.
  • [11] Kalkal K.K., Sheoran D. and Deswal S. (2020): Reflection of plane waves in a nonlocal micropolar thermoelastic medium under the effect of rotation.– Acta Mechanica, vol.231, No.7, pp.2849-2866.
  • [12] Abo-Dahab S. M., Abd-Alla A.M. and Kilany A.A. (2020): Electromagnetic field in fiber-reinforced micropolar thermoelastic medium using four models.– Journal of Ocean Engineering and Science, vol.5, No.3, pp.230-248.
  • [13] Alharbi A.M., Abd-Elaziz E.M. and Othman M.I. (2021): Effect of temperature-dependent and internal heat source on a micropolar thermoelastic medium with voids under 3PHL model.– ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fü r Angewandte Mathematik und Mechanik, vol.101, No.6, e202000185.
  • [14] Alharbi A.M. (2021): The effect of diffusion on micropolar thermoelastic medium under 3PHL model.– ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fü r Angewandte Mathematik und Mechanik, vol.101, No.9, e202100004.
  • [15] Minagawa S., Arakawa K.I. and Yamada M. (1981): Dispersion curves for waves in a cubic micropolar medium with reference to estimations of the material constants for diamond.– Bulletin of JSME, vol.24, No.187, pp.22-28.
  • [16] Kumar R. and Ailawalia P. (2006): Time harmonic sources at micropolar thermoelastic medium possessing cubic symmetry with one relaxation time.– European Journal of Mechanics-A/Solids, vol.25, No.2, pp.271-282.
  • [17] Kumar R. and Ailawalia P. (2006): Deformation due to time-harmonic sources in a micropolar thermoelastic medium possessing cubic symmetry with two relaxation times.– Applied Mathematics and Mechanics, vol.27, No.6, pp.781-792.
  • [18] Othman M.I., Lotfy K.H. and Farouk R.M. (2009): Effects of magnetic field and inclined load in a micropolar thermoelastic medium possessing cubic symmetry under three theories.– International Journal of Industrial Mathematics, vol.1, No.2, pp.87-104.
  • [19] Kumar R. and Partap G. (2010): Propagation of waves in micropolar thermoelastic cubic crystals.– Applied Mathematics and Information Sciences, vol.4, pp.107-123.
  • [20] Othman M.I., Abo-Dahab S.M. and Alosaimi H.A. (2016): 2D Problem of micropolar thermoelastic rotating medium possessing cubic symmetry under effect of inclined load with GN III.– Journal of Computational and Theoretical Nanoscience, vol.13, No.8, pp.5590-5597.
  • [21] Othman M.I., Abo-Dahab S.M. and Alosaimi H.A. (2018): Effect of inclined load and magnetic field in a micropolar thermoelastic medium possessing cubic symmetry in the context of GN theory.– Multidiscipline Modeling in Materials and Structures, vol.14, pp.306-321.
  • [22] Aouadi M. (2006): Variable electrical and thermal conductivity in the theory of generalized thermoelastic diffusion.– Zeitschrift fü r Angewandte Mathematik und Physik ZAMP, vol.57, No.2, pp.350-366.
  • [23] Mondal S., Mallik S.H. and Kanoria M. (2014): Fractional order two-temperature dual-phase-lag thermoelasticity with variable thermal conductivity.– International Scholarly Research Notices, vol.2014. p.13.
  • [24] Li C., Guo H. and Tian X. (2017): Time-domain finite element analysis to nonlinear transient responses of generalized diffusion-thermoelasticity with variable thermal conductivity and diffusivity.– International Journal of Mechanical Sciences, vol.131, pp.234-244.
  • [25] Abbas I., Hobiny A. and Marin M. (2020): Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity.– Journal of Taibah University for Science, vol.14, No.1, pp.1369-1376.
  • [26] Hobiny A.D. and Abbas I. (2022): The impacts of variable thermal conductivity in a semiconducting medium using finite element method.– Case Studies in Thermal Engineering, vol.31, pp.101773.
  • [27] Green A.E. and Naghdi P. (1993): Thermoelasticity without energy dissipation.– Journal of Elasticity, vol.31, No.3, pp.189-208.
  • [28] Youssef H.M. and El-Bary A.A. (2010): Two-temperature generalized thermoelasticity with variable thermal conductivity.– Journal of Thermal Stresses, vol.33, No.3, pp.187-201.
  • [29] Lotfy K. (2019): Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium.– Silicon, vol.11, No.4, pp.1863-1873.
  • [30] Lotfy K., El-Bary A.A. and El-Sharif A.H. (2020): Ramp-type heating microtemperature for a rotator semiconducting material during photo-excited processes with magnetic field.– Results in Physics, vol.19, p.10, 103338.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fde0d08-484c-4f76-bb1f-096ef5cbef92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.