PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prolina : pospolity aminokwas wyjątkowy katalizator. Część IV, Reakcja Michaela

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Proline as a common amino acid and an exceptional catalyst. Part IV, Michael reaction
Języki publikacji
PL
Abstrakty
EN
In recent years there has been a dynamic development of asymmetric synthesis. Groups of researchers, particularly the one led by Benjamin List and Carlos Barbas, carried out a number of reactions and showed the effectiveness of the use of small organic molecules such as proline as catalysts. Michael addition catalyzed with proline is a particularly interesting reaction because it can be carried out in two aminocatalytic pathways. The analysis of Michael reaction reveals potential for both forms of aminocatalysis: enamine and iminium catalysis (Scheme 1) [1–14]. Presumably Michael reaction proceeds mainly according to enamine mechanism. The use of proline in Michael reaction with imine activated acceptor is slightly effective. So far the researches have shown that the modification of proline molecule or addition of other catalyst is necessary for condensation to appear. Enamine catalysis concerns the activation of carbonyl compound in situ being a donor. There is no need for enolase anion to be created earlier [2, 15–17]. When, as a result of the reaction of a,b-unsaturated carbonyl compound with proline, Michael acceptor activation appears it means that it is enamine mechanism reaction (Scheme 1) [2, 24]. One of the first examples of direct Michael reaction proceeding through enamine transition state is the reaction of cyclopentanone with nitrostyrene (Scheme 6) [20–23]. Other examples of Michael addition of ketone with nitro olefin catalysed by proline are shown in table 2 and 3 [10, 23, 30]. Nitroketones obtained in that way are useful as precursors for different organic compounds [33], also pyrrolidines [34]. Pyrrolidines are pharmacologically active and they selectively block presynaptic dopamine receptors [34] (Scheme 7). Except for Michael intermolecular reaction, intramolecular condensation adducts were also obtained. Michael intramolecular proline-catalyzed condensation in which inactive ketones transform into α,β-unsaturated carbonyl compounds was described (Scheme 9) [35, 36]. These reactions require a stoichiometric amount of a catalyst and a long time of reaction and they give as a result a little enantiomeric excess [11, 24, 35]. In 1991, Yamaguchi and co-workers carried out malonates Michael addition to α, β-unsaturated aldehydes catalyzed by L-proline [24, 39]. The reaction proceeded according to enamine mechanism, for example dimethyl malonate was reacted with hex- 2-enal in the presence of proline to give Michael adduct in 44% yield. To improve the yield an attempt of a slight modification of a proline molecule was made transforming it into proper salt. Proline lithium salt enabled to obtain the condensation product in 93% yield (Tab. 4). Regardless of a used catalyst the products in the form of racemates were obtained. In order to improve enantioselective properties of a catalyst, Michael addition of diisopropyl malonate to cycloheptenone was carried out in chloroform in the presence of different proline salts. Optimal enantioselectivity and yield was obtained by using rubidium salt (Tab. 5–7) [40, 41]. Rubidium prolinate-catalyzed Michael additions are used in industry e.g. for enantioselective synthesis of the selective serotonine reuptake inhibitior (SSRI) (–)-paroxetine (antidepressant) (Scheme 12) [24].
Rocznik
Strony
49--65
Opis fizyczny
Bibliogr. 41 poz., schem., tab.
Twórcy
  • Katedra i Zakład Chemii Ogólnej Uniwersytetu Mikołaja Kopernika, Collegium Medicum w Bydgoszczy ul. Dębowa 3, 85-626 Bydgoszcz
  • Katedra i Zakład Chemii Ogólnej Uniwersytetu Mikołaja Kopernika, Collegium Medicum w Bydgoszczy ul. Dębowa 3, 85-626 Bydgoszcz
  • Katedra i Zakład Chemii Ogólnej Uniwersytetu Mikołaja Kopernika, Collegium Medicum w Bydgoszczy ul. Dębowa 3, 85-626 Bydgoszcz
  • Katedra i Zakład Chemii Ogólnej Uniwersytetu Mikołaja Kopernika, Collegium Medicum w Bydgoszczy ul. Dębowa 3, 85-626 Bydgoszcz
  • Katedra i Zakład Chemii Ogólnej Uniwersytetu Mikołaja Kopernika, Collegium Medicum w Bydgoszczy ul. Dębowa 3, 85-626 Bydgoszcz
Bibliografia
  • [1] S.K. Panday, Tetrahedron: Asymmetry, 2011, 22, 1817.
  • [2] Ł. Albrecht, H. Krawczyk, Wiad. Chem., 2009, 63, 5.
  • [3] B. List, Synlett, 2001, 11, 1675.
  • [4] Y.N. Belokon, K.A. Kochetkov, T.D. Churkina, N.S. Ikonnikov, S.A. Orlova, N.A. Kuźmina, D.E. Bodrov, Russ. Chem. Bull., 1993, 42, 1525.
  • [5] M. Yamaguchi, T. Shiraishi, M. Hirama, Angew. Chem. Int. Ed. Engl., 1993, 32, 1176.
  • [6] M. Yamaguchi, T. Shiraishi, M. Hirama, J. Org. Chem. 1996, 61, 3520.
  • [7] A. Kawara, T. Taguchi, Tetrahedron Lett., 1994, 47, 8805.
  • [8] S. Hanessian, V. Pham, Org. Lett., 2000, 2, 2975.
  • [9] N.A. Paras, D.W.C. MacMillan, J. Am. Chem. Soc., 2001, 123, 4370.
  • [10] B. List, P. Pojarliev, H.J. Martin, Org. Lett., 2001, 3, 2423.
  • [11] S. Mukherjee, J.W. Yang, S. Hoffmann, B. List, Chem. Rev., 2007, 107, 5471.
  • [12] H. Wynberg, R. Helder, Tetrahedron Lett., 1975, 46, 4057.
  • [13] K. Herrman, H. Wynberg, J. Org. Chem., 1979, 44, 2238.
  • [14] A. Latvala, S. Stanchev, A. Linden, M. Hesse, Tetrahedron: Asymmetry, 1993, 4, 173.
  • [15] M. Marigo, K.A. Jorgensen, Chem. Commun., 2006, 2001.
  • [16] G. Guillena, D.J. Ramon, Tetrahedron: Asymmetry, 2006, 17, 1465.
  • [17] S. Mukherjee, J.W. Yang, S. Hoffmann, B. List, Chem. Rev., 2007, 107, 5471.
  • [18] M. Marigo, K.A. Jorgensen, Chem. Commun., 2006, 2001.
  • [19] G. Guillena, D.J. Ramon, Tetrahedron: Asymmetry, 2006, 17, 1465.
  • [20] W. Notz, F. Tanaka, C.F. Barbas III, Acc. Chem. Res., 2004, 37, 580.
  • [21] J.M. Betancort, K. Sakthivel, R. Thayumanavan, C.F. Barbas, Tetrahedron Lett., 2001, 42, 4441.
  • [22] J.M. Betancort, C.F. Barbas III, Org. Lett. 2001, 3, 3737.
  • [23] J.M. Betancort, K. Sakthivel, R. Thayumanavan, F. Tanaka, C.F Barbas III, Synthesis, 2004, 1509.
  • [24] B. List, Tetrahedron, 2002, 58, 5573.
  • [25] B. List, P. Pojarliev, H.J. Martin, Org. Lett., 2001, 3, 2423.
  • [26] J. Betancort, K. Saktthivel, R. Thayumanavan, C. F. Barbas III,Tetrahedron Lett., 2001, 3, 4441.
  • [27] Rasalkar, M.S.; Potdar, M.K.; Mohile, S.S.; Salunkhe, M.M.J. Mol. Catal. A, 2005, 235, 267.
  • [28] List, B.; Pojarliev, P.; Martin, H.J. Org. Lett., 2001, 3, 2423.
  • [29] Enders, D.; Seki, A. Synlett, 2002, 26.
  • [30] D. Enders, A. Seki, Synlett, 2002, 26.
  • [31] H. Yang, M.W. Wong, Org. Biomol. Chem., 2012, 10, 3229.
  • [32] J. Xiao, F.-X. Xu, Y.-P. Lu, T.-P. Loh, Org. Lett., 2010, 12, 1220.
  • [33] D. Seebach, E.W. Colvin, F. Lehr, T. Weller, Chimia, 1979, 33, 1.
  • [34] K.A.I. Svensson, PCT Int. Appl. WO 9218475, 1992.
  • [35] A.P. Kozikowski, B.B. Mugrage, J. Org. Chem., 1989, 54, 2275.
  • [36] Y. Hirai, T. Takashi, T. Yamazaki, T. Momose, J. Chem. Soc. Perkin. Trans., 1992, 1, 509.
  • [37] J. Bench, C. Liu, C.R. Evett, C.M.H. Watanabe, J. Org. Chem., 2006, 71, 9458.
  • [38] A.E. Asato, C. Watanabe, X.Y. Li, R.S.H. Liu, Tetrahedron Lett., 1992, 33, 3105.
  • [39] M. Yamaguchi, N. Yokota, T. Minami, J. Chem. Soc., Chem. Commun., 1991, 1088.
  • [40] M. Yamaguchi, T. Shirashi, M. Hirama, Angew. Chem., Int. Ed. Engl., 1993, 32, 1176.
  • [41] M. Yamaguhi, T. Shiraishi, Y. Igarashi, M. Hirama, Tetrahedron. Lett., 1994, 35, 8233.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fdd6b4f-f132-444f-93b3-d5378cf4021f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.