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Abstract

Let S be an integral domain of positive characteristic p, which is not a field, S∗ the unit group

of S, G a finite group, and SλG the twisted group algebra of the group G over S with a 2-cocycle

λ ∈ Z2(G,S∗). Denote by Indm(SλG) the set of isomorphism classes of indecomposable SλG-

modules of S-rank m. We exhibit algebras SλG of SUR-type, in the sense that there exists a function

fλ : N → N such that fλ(n) ≥ n and Indfλ(n)(S
λG) is an infinite set for every integer n > 1.

1. Introduction

Let p ≥ 2 be a prime. Gudyvok [4] and Janusz [8], [9] showed that if

K is an infinite field of characteristic p and G is a non-cyclic p-group for

which |G/G′| 6= 4, then Indn(KG) is an infinite set for every integer n > 1.

Let G be a finite p-group of order |G| > 2, K a commutative local ring of

characteristic pn, and radK 6= 0. Gudyvok and Chukhray [5], [6] proved

that if K := K/ radK is an infinite field or K is an integral domain, then

Indn(KG) is infinite for every integer n > 1. In paper [7], jointly with Sygetij,

they obtained a similar result in the case where G is a non-cyclic p-group,

p 6= 2 and K is an infinite ring of characteristic p or K is an infinite field. The

similar problem was studied in [2], [3] for twisted group algebras KλG, where

K is a field of characteristic p or a commutative local ring of characteristic p.

In this paper we exhibit twisted group algebras SλG of SUR-type, where

S is an integral domain of characteristic p and G is a finite group.
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2. Preliminaries

Let K be a commutative ring of characteristic p, K∗ the unit group of K,

G a finite group, e the identity element of G, Gp a Sylow p-subgroup of G and

G′
p the commutator subgroup of Gp. We suppose that p divides |G| and Gp is

a normal subgroup of G. The twisted group algebra of G over K with a 2-cocycle

λ ∈ H2(G,K∗) is the free K-algebra KλG with a K-basis {ug : g ∈ G} sat-

isfying uaub = λa,buab for all a, b ∈ G. The K-basis {ug : g ∈ G} is called

canonical (corresponding to λ). By a KλG-module we mean a finitely gener-

ated left KλG-module that is K-free. Denote by Indm(KλG) the set of iso-

morphism classes of indecomposable KλG-modules of K-rank m. An algebra

KλG is defined to be of SUR-type (Strongly Unbounded Representation type)

if there is a function fλ : N → N such that fλ(n) ≥ n and Indfλ(n)(K
λG) is an

infinite set for every n > 1. A function fλ is called an SUR-dimension-valued

function. Given a KλH-module V , we write EndKλH(V ) for the ring of all

KλH-endomorphisms of V , radKλH(V ) for the Jacobson radical of EndKλH(V )

and EndKλH(V ) for the quotient ring

EndKλH(V )/ radEndKλH(V ).

Given a subgroup Ω of K∗, we denote by Z2(H,Ω) the group of all Ω-valued

normalized 2-cocycles of the group H, where we assume that H acts trivially

on Ω. If D is a subgroup of a group H, the restriction of λ ∈ Z2(H,K∗) to

D ×D is also denoted by λ. In this case, KλD is the K-subalgebra of KλH

consisting of all K-linear combinations of the elements {ud : d ∈ D}, where

{uh : h ∈ H} is a canonical K-basis of KλH corresponding to λ.

Throughout the paper, S denotes an arbitrary integral domain of charac-

teristic p, which is not a field, m is a maximal ideal of S and R = Sm is the

localization of S at m. The ring R is a local ring and mR is a unique maxi-

mal ideal of R. Moreover, S/m ∼= R/mR as fields, and as R-modules. Given

µ ∈ Z2(Gp, S
∗), the kernel Ker(µ) of µ is the union of all cyclic subgroups 〈g〉

of Gp such that the restriction of µ to 〈g〉 × 〈g〉 is a coboundary. We recall

from [[3], p. 196] that G′
p ⊂ Ker(µ), Ker(µ) is a normal subgroup of Gp and

the restriction of µ to Ker(µ)×Ker(µ) is a coboundary.

Let H = 〈a〉 be a cyclic p-group of order |H| > 2, and K a commutative

local ring of characteristic p. Suppose that there exists a non-zero element
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t ∈ radK which is not a zero-divisor. Let Em be the identity matrix of order

m, Jm(0) the upper Jordan block of order m with zeros on the main diagonal,

and 〈1〉 the m× 1-matrix of the form












1

0
...

0













.

Denote by Γi the matrix K-representation of degree n of the group H defined

in the following way:

1) if n = 2 then

Γi(a) =

(

1 ti

0 1

)

(i ∈ N);

2) if n = 3m (m ≥ 1) then

Γi(a) =







Em tiEm Jm(0)

0 Em tiEm

0 0 Em






(i ∈ N);

3) if n = 3m+ 1 (m ≥ 1) then

Γi(a) =











Em t2iEm Jm(0) t〈1〉

0 Em tiEm 0

0 0 Em 0

0 0 0 1











(i ∈ N);

4) if n = 3m+ 2 (m ≥ 1) then

Γi(a) =

















Em ti+2Em Jm(0) t2i+4〈1〉 t〈1〉

0 Em t2i+4Em 0 t2〈1〉

0 0 Em 0 0

0 0 0 1 1

0 0 0 0 1

















(i ∈ N);

Lemma 1 ([3], p. 272). Let Vi be the underlying KH-module of the represen-

tation Γi. If i 6= j, then the KH-modules Vi and Vj are non-isomorphic. The

algebra EndKH(Vi) is finitely generated as a K-module and there is an algebra

isomorphism EndKH(Vi) ∼= K/ radK for every i ∈ N.
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Lemma 2 ([3], p. 275). Let H = 〈a〉 × 〈b〉 be an abelian group of type (2, 2),

t ∈ radK, t 6= 0 and assume that t is not a zero-divisor. Denote by Vi the

underlying KH-module of the matrix representation ∆i of degree n of the group

H defined as follows:

1) if n = 2m (m ≥ 1), then

∆i(a) =

(

Em tiEm

0 Em

)

∆i(b) =

(

Em Jm(0)

0 Em

)

(i ∈ N);

2) if n = 2m+ 1 (m ≥ 1), then

∆i(a) =







Em tiEm 0

0 Em 0

0 0 1






∆i(b) =







Em Jm(0) ti〈1〉

0 Em 0

0 0 1






(i ∈ N);

If i 6= j, then the modules Vi and Vj are non-isomorphic.

Moreover, EndKH(Vi) is finitely generated as a K-module and there is an

algebra isomorphism EndKH(Vi) ∼= K/ radK for all i ∈ N.

Let H be a finite p-group and |H| > 2. Denote by [M ] the isomorphism

class of RH-modules which contains M and by
∑

n(RH) the set of all [M ]

satisfying the following conditions:

(i) M ∼= R⊗S W for some SH-module W ;

(ii) the R-rank of M equals n;

(iii) EndRH(M) is finitely generated as an R-module;

(iv) EndRH(M) ∼= R/ radR.

Lemma 3. The set
∑

n(RH) is infinite for every integer n > 1.

Proof. Let t be a non-zero element of m. Then t ∈ radR and t is not

a zero-divisor in R. Next apply Lemmas 1 and 2. �

Lemma 4. Let K be a commutative local ring of characteristic p, B a finite

abelian p-group, D a subgroup of B, λ ∈ Z2(B,K∗) and M an indecomposable

KλD-module. Assume that EndKλD(M) is a finitely generated K-algebra and

EndKλD(M) is isomorphic to a field L containing K = K/ radK. Then

MB = KλB ⊗KλD M
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is an indecomposable KλB-module, EndKλB(M
B) is a finitely generated K-

algebra and the quotient algebra EndKλB(M
B) is isomorphic to a field that is

a finite purely inseparable field extension of L.

The proof is similar to those of Lemma 2.2 in [1].

Let λ ∈ Z2(G,S∗). Denote by Hp the kernel of the restriction of λ to

Gp×Gp. If h ∈ Hp and x ∈ G, then x−1hx ∈ Gp and |x−1hx| = |h|. From the

equality u−1
x uhux = γux−1hx (γ ∈ S∗) follows

u−1
x u

|h|
h ux = γ|h| · u

|h|
x−1hx

,

hence

u
|h|
x−1hx

= γ−|h|ue.

We obtain x−1hx ∈ Hp, therefore Hp is a normal subgroup of G. Since the

restriction of λ to Hp×Hp is a coboundary, we may assume that λh1,h2 = 1 for

all h1, h2 ∈ Hp. Then γ|h| = 1, hence γ = 1. Consequently, we may suppose

that λa,g = λg,a = 1 for arbitrary a ∈ Hp and g ∈ G.

3. On twisted group algebras of SUR-type

We recall that S is an integral domain of characteristic p, which is not a field,

and R is the localization of S at a maximal ideal m. Denote by F a subfield

of S. We assume that G is a finite group, and Gp is a normal subgroup of G.

Given λ ∈ Z2(G,S∗), we denote by Hp the kernel of the restriction of λ to

Gp ×Gp.

Theorem 1. Let G be a finite group and λ ∈ Z2(G,S∗). If |Hp| > 2 then

SλG is of SUR-type with an SUR-dimension-valued function fλ(n) = ntn,

where 1 ≤ tn ≤ |G : Hp|.

Proof. By Lemma 3,
∑

n(RHp) is infinite for each n > 1.

Let [V ] ∈
∑

n(RHp) and V G = RλG⊗RHp V . Denote by {g1 = e, g2, . . . , gt}

a cross section of Hp in G. Then

V G = ⊗t
i=1Vi, Vi = ugi ⊗ V.

The RHp-module Vi is called a conjugate of V . Denote V (gi) = Vi. Since

EndRHp(Vi) ∼= EndRHp(V ), the ring EndRHp(Vi) is local for every i ∈ {1, . . . , t}.

Hence Vi is an indecomposable RHp-module. By Krull-Schmidt Theorem [[11],
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Sect. 7.3], the RHp-module V G has a unique decomposition into a finite sum of

indecomposable RHp-modules, up to isomorphism and the order of summands.

Let [L] ∈
∑

n(RHp). If V is isomorphic to an RHp-module L(g), then L is

isomorphic to the RHp-module V (g−1). Hence there are infinitely many classes

[L1], . . . , [Li], . . . in
∑

n(RHp) such that every indecomposable RHp-component

of
(

LG
i

)

Hp
is isomorphic to none of the indecomposable RHp-component of

(

LG
j

)

Hp

if i 6= j. Therefore there are infinitely many non-isomorphic indecom-

posable RλG-modules M such that M is an RλG-component of a module of

the form V G. The R-rank of any RλG-component of V G is divisible by n and

does not exceed n · |G : Hp|. Since

V ∼= R⊗S W, V G ∼= R⊗S WG

for some SHp-module W , there exists an integer tn such that 1 ≤ tn ≤ |G : Hp|

and Indntn(S
λG) is an infinite set. �

Theorem 2. Let G be a finite group and λ ∈ Z2(G,S∗) and assume that

|Hp : G
′
p| > 2. Then fλ(n) := ndtn, where d = |Gp : Hp| and 1 ≤ tn ≤ |G : Gp|,

is an SUR-dimension-valued function for SλG.

Proof. Let A = G/G′
p and

U =
⊕

g∈G′

p\{e}

S(ug − ue).

The set V := SλG·U is a two-sided ideal of SλG. The quotient algebra SλG/V

is isomorphic to SµA, where µxG′

p,yG
′

p
= λx,y for all x, y ∈ G.

It contains the group algebra SBp, where Bp = Hp/G
′
p. Since |Bp| > 2, by

Lemma 3,
∑

n(RBp) is infinite for each positive integer n. The abelian group

Ap = Gp/G
′
p is a Sylow p-subgroup of A.

Let [M ] ∈
∑

n(RBp). By Lemma 4, the RµAp-module

MAp = RµAp ⊗RBp M

is indecomposable and EndRµAp

(

MAp
)

is a local ring. The R-rank of MAp

equals n · |Ap : Bp| = n · |Gp : Hp|. Arguing similarly as in the proof of Theo-

rem 1, we conclude that if [M ] and [N ] belong to
∑

n(RBp) and M 6∼= N , then

MAp 6∼= NAp . Let
(

MAp
)A

:= RµA⊗RµAp M
Ap .
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By the same arguments as in the proof of Theorem 1, we can prove that there

exist infinitely many pairwise non-isomorphic indecomposable RµA-modules

Ω such that Ω is an RµA-component of a module of the form
(

MAp
)A

. Note

that the R-rank of Ω is divisible by n · |Gp : Hp| and does not exceed

n · |Gp : Hp| · |G : Gp| = nd · |G : Gp|.

Hence for every n > 1 there is an integer tn such that 1 ≤ tn ≤ |G : Gp| and

the set Indndtn(S
µA) is infinite.

If M is an SµA-module, then M is as well an SλG-module. SµA-modules M

and N are isomorphic if and only if M and N are isomorphic as SλG-modules.

Consequently, the set Indndtn(S
λG) is also infinite for any n > 1. �

Theorem 3. Let p 6= 2, G be a finite group and λ ∈ Z2(G,F ∗). If the algebra

F λG is not semisimple, then the algebra SλG is of SUR-type. Moreover, if

d = dimF (F
λGp/ radF

λGp) and d < |Gp : G
′
p|, then a function fλ(n) = ndtn,

where 1 ≤ tn ≤ |G : Gp|, is an SUR-dimension-valued function for SλG.

Proof. Applying Lemma 3 and arguing as in the proof of Theorem 2 in [3], we

prove that, for every n > 1, there are infinitely many pairwise non-isomorphic

indecomposable RλGp-modules V1, V2, . . . satisfying the following conditions:

1) the R-rank of Vi is equal to nd;

2) EndRλGp
(Vi) is finitely generated as an R-module;

3) EndRλGp
(Vi) is isomorphic to a field which is a finite purely inseparable

field extension of R/ radR;

4) Vi
∼= R⊗S Wi, where Wi is an SλGp-module.

Let V G
i := RλG⊗RλGp

Vi and
(

V G
i

)

Gp
be the module V G

i viewed as an RλGp-

module. The RλGp-module (V G
i )Gp is a direct sum of conjugates of Vi. By the

Krull-Schmidt Theorem [[11], Sect. 7.3],
(

V G
i

)

Gp
has a unique decomposition

into a finite sum of indecomposable RλGp-modules, up to isomorphism and

the order of summands. Hence the R-rank of each indecomposable component

of RλG-module V G
i is divisible by nd. It follows that the S-rank of each

indecomposable component of SλG-module WG
i is divisible by nd. Therefore,

there exists an integer tn such that 1 ≤ tn ≤ |G : Gp| and Indndtn(S
λG) is an

infinite set. �

Theorem 4. Let p = 2, G be a finite group, λ ∈ Z2(G,F ∗) and moreover

d = dimF (F
λG2/ radF

λG2).
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(i) If the algebra F λG is not semisimple, then the set Indl(S
λG) is infinite

for some l ≤ |G|.

(ii) If d < 1
2 |G2 : G

′
2|, then SλG is of SUR-type with an SUR-dimension-

valued function fλ(n) = ndtn, where 1 ≤ tn ≤ |G : G2|.

Proof. Apply Lemma 3 and proceed as in the proof of Theorem 3 in [3]. �
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