SCIENTIFIC ISSUES Jan Długosz University in Częstochowa Mathematics XVII (2012) 49–56

TWISTED GROUP ALGEBRAS OF SUR-TYPE OF FINITE GROUPS OVER AN INTEGRAL DOMAIN OF CHARACTERISTIC p

DARIUSZ KLEIN

Abstract

Let S be an integral domain of positive characteristic p, which is not a field, S^* the unit group of S, G a finite group, and $S^{\lambda}G$ the twisted group algebra of the group G over S with a 2-cocycle $\lambda \in Z^2(G, S^*)$. Denote by $\operatorname{Ind}_m(S^{\lambda}G)$ the set of isomorphism classes of indecomposable $S^{\lambda}G$ modules of S-rank m. We exhibit algebras $S^{\lambda}G$ of SUR-type, in the sense that there exists a function $f_{\lambda} \colon \mathbb{N} \to \mathbb{N}$ such that $f_{\lambda}(n) \geq n$ and $\operatorname{Ind}_{f_{\lambda}(n)}(S^{\lambda}G)$ is an infinite set for every integer n > 1.

1. INTRODUCTION

Let $p \geq 2$ be a prime. Gudyvok [4] and Janusz [8], [9] showed that if K is an infinite field of characteristic p and G is a non-cyclic p-group for which $|G/G'| \neq 4$, then $\operatorname{Ind}_n(KG)$ is an infinite set for every integer n > 1. Let G be a finite p-group of order |G| > 2, K a commutative local ring of characteristic p^n , and rad $K \neq 0$. Gudyvok and Chukhray [5], [6] proved that if $\overline{K} := K/\operatorname{rad} K$ is an infinite field or K is an integral domain, then $\operatorname{Ind}_n(KG)$ is infinite for every integer n > 1. In paper [7], jointly with Sygetij, they obtained a similar result in the case where G is a non-cyclic p-group, $p \neq 2$ and K is an infinite ring of characteristic p or \overline{K} is an infinite field. The similar problem was studied in [2], [3] for twisted group algebras $K^{\lambda}G$, where K is a field of characteristic p or a commutative local ring of characteristic p.

In this paper we exhibit twisted group algebras $S^{\lambda}G$ of SUR-type, where S is an integral domain of characteristic p and G is a finite group.

Dariusz Klein — Pomeranian University in Słupsk.

⁴⁹

DARIUSZ KLEIN

2. Preliminaries

Let K be a commutative ring of characteristic p, K^* the unit group of K, G a finite group, e the identity element of G, G_p a Sylow p-subgroup of G and G'_p the commutator subgroup of G_p . We suppose that p divides |G| and G_p is a normal subgroup of G. The twisted group algebra of G over K with a 2-cocycle $\lambda \in H^2(G, K^*)$ is the free K-algebra $K^{\lambda}G$ with a K-basis $\{u_g : g \in G\}$ satisfying $u_a u_b = \lambda_{a,b} u_{ab}$ for all $a, b \in G$. The K-basis $\{u_g : g \in G\}$ is called canonical (corresponding to λ). By a $K^{\lambda}G$ -module we mean a finitely generated left $K^{\lambda}G$ -module that is K-free. Denote by $\operatorname{Ind}_m(K^{\lambda}G)$ the set of isomorphism classes of indecomposable $K^{\lambda}G$ -modules of K-rank m. An algebra $K^{\lambda}G$ is defined to be of SUR-type (Strongly Unbounded Representation type) if there is a function $f_{\lambda} \colon \mathbb{N} \to \mathbb{N}$ such that $f_{\lambda}(n) \ge n$ and $\operatorname{Ind}_{f_{\lambda}(n)}(K^{\lambda}G)$ is an infinite set for every n > 1. A function f_{λ} is called an SUR-dimension-valued function. Given a $K^{\lambda}H$ -module V, we write $\operatorname{End}_{K^{\lambda}H}(V)$ for the ring of all $K^{\lambda}H$ -endomorphisms of V, $\operatorname{rad}_{K^{\lambda}H}(V)$ for the Jacobson radical of $\operatorname{End}_{K^{\lambda}H}(V)$ and $\overline{\operatorname{End}_{K^{\lambda}H}(V)$ for the quotient ring

$\operatorname{End}_{K^{\lambda}H}(V)/\operatorname{rad}\operatorname{End}_{K^{\lambda}H}(V).$

Given a subgroup Ω of K^* , we denote by $Z^2(H, \Omega)$ the group of all Ω -valued normalized 2-cocycles of the group H, where we assume that H acts trivially on Ω . If D is a subgroup of a group H, the restriction of $\lambda \in Z^2(H, K^*)$ to $D \times D$ is also denoted by λ . In this case, $K^{\lambda}D$ is the K-subalgebra of $K^{\lambda}H$ consisting of all K-linear combinations of the elements $\{u_d : d \in D\}$, where $\{u_h : h \in H\}$ is a canonical K-basis of $K^{\lambda}H$ corresponding to λ .

Throughout the paper, S denotes an arbitrary integral domain of characteristic p, which is not a field, \mathfrak{m} is a maximal ideal of S and $R = S_{\mathfrak{m}}$ is the localization of S at \mathfrak{m} . The ring R is a local ring and $\mathfrak{m}R$ is a unique maximal ideal of R. Moreover, $S/\mathfrak{m} \cong R/\mathfrak{m}R$ as fields, and as R-modules. Given $\mu \in Z^2(G_p, S^*)$, the kernel Ker(μ) of μ is the union of all cyclic subgroups $\langle g \rangle$ of G_p such that the restriction of μ to $\langle g \rangle \times \langle g \rangle$ is a coboundary. We recall from [[3], p. 196] that $G'_p \subset \text{Ker}(\mu)$, Ker(μ) is a normal subgroup of G_p and the restriction of μ to Ker(μ) \times Ker(μ) is a coboundary.

Let $H = \langle a \rangle$ be a cyclic *p*-group of order |H| > 2, and K a commutative local ring of characteristic *p*. Suppose that there exists a non-zero element

 $t \in \operatorname{rad} K$ which is not a zero-divisor. Let E_m be the identity matrix of order $m, J_m(0)$ the upper Jordan block of order m with zeros on the main diagonal, and $\langle 1 \rangle$ the $m \times 1$ -matrix of the form

$$\left(\begin{array}{c}1\\0\\\vdots\\0\end{array}\right).$$

Denote by Γ_i the matrix K-representation of degree n of the group H defined in the following way:

1) if n = 2 then

$$\Gamma_i(a) = \begin{pmatrix} 1 & t^i \\ 0 & 1 \end{pmatrix} \quad (i \in \mathbb{N});$$

2) if
$$n = 3m \ (m \ge 1)$$
 then

$$\Gamma_i(a) = \begin{pmatrix} E_m & t^i E_m & J_m(0) \\ 0 & E_m & t^i E_m \\ 0 & 0 & E_m \end{pmatrix} \quad (i \in \mathbb{N});$$

3) if $n = 3m + 1 \ (m \ge 1)$ then

$$\Gamma_i(a) = \begin{pmatrix} E_m & t^{2i}E_m & J_m(0) & t\langle 1 \rangle \\ 0 & E_m & t^iE_m & 0 \\ 0 & 0 & E_m & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad (i \in \mathbb{N});$$

4) if $n = 3m + 2 \ (m \ge 1)$ then

$$\Gamma_i(a) = \begin{pmatrix} E_m & t^{i+2}E_m & J_m(0) & t^{2i+4}\langle 1 \rangle & t\langle 1 \rangle \\ 0 & E_m & t^{2i+4}E_m & 0 & t^2\langle 1 \rangle \\ 0 & 0 & E_m & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad (i \in \mathbb{N});$$

Lemma 1 ([3], p. 272). Let V_i be the underlying KH-module of the representation Γ_i . If $i \neq j$, then the KH-modules V_i and V_j are non-isomorphic. The algebra $\operatorname{End}_{KH}(V_i)$ is finitely generated as a K-module and there is an algebra isomorphism $\overline{\operatorname{End}_{KH}(V_i)} \cong K/\operatorname{rad} K$ for every $i \in \mathbb{N}$. **Lemma 2** ([3], p. 275). Let $H = \langle a \rangle \times \langle b \rangle$ be an abelian group of type (2,2), $t \in \operatorname{rad} K$, $t \neq 0$ and assume that t is not a zero-divisor. Denote by V_i the underlying KH-module of the matrix representation Δ_i of degree n of the group H defined as follows:

1) if $n = 2m \ (m \ge 1)$, then

$$\Delta_i(a) = \begin{pmatrix} E_m & t^i E_m \\ 0 & E_m \end{pmatrix} \quad \Delta_i(b) = \begin{pmatrix} E_m & J_m(0) \\ 0 & E_m \end{pmatrix} \quad (i \in \mathbb{N});$$

2) if $n = 2m + 1 \ (m \ge 1)$, then

$$\Delta_i(a) = \begin{pmatrix} E_m & t^i E_m & 0\\ 0 & E_m & 0\\ 0 & 0 & 1 \end{pmatrix} \quad \Delta_i(b) = \begin{pmatrix} E_m & J_m(0) & t^i \langle 1 \rangle\\ 0 & E_m & 0\\ 0 & 0 & 1 \end{pmatrix} \quad (i \in \mathbb{N});$$

If $i \neq j$, then the modules V_i and V_j are non-isomorphic.

Moreover, $\operatorname{End}_{KH}(V_i)$ is finitely generated as a K-module and there is an algebra isomorphism $\overline{\operatorname{End}_{KH}(V_i)} \cong K/\operatorname{rad} K$ for all $i \in \mathbb{N}$.

Let H be a finite p-group and |H| > 2. Denote by [M] the isomorphism class of RH-modules which contains M and by $\sum_{n}(RH)$ the set of all [M]satisfying the following conditions:

- (i) $M \cong R \otimes_S W$ for some *SH*-module *W*;
- (ii) the *R*-rank of M equals n;
- (iii) $\operatorname{End}_{RH}(M)$ is finitely generated as an *R*-module;
- (iv) $\operatorname{End}_{RH}(M) \cong R/\operatorname{rad} R$.

Lemma 3. The set $\sum_{n}(RH)$ is infinite for every integer n > 1.

Proof. Let t be a non-zero element of \mathfrak{m} . Then $t \in \operatorname{rad} R$ and t is not a zero-divisor in R. Next apply Lemmas 1 and 2.

Lemma 4. Let K be a commutative local ring of characteristic p, B a finite abelian p-group, D a subgroup of B, $\lambda \in Z^2(B, K^*)$ and M an indecomposable $K^{\lambda}D$ -module. Assume that $\operatorname{End}_{K^{\lambda}D}(M)$ is a finitely generated K-algebra and $\overline{\operatorname{End}_{K^{\lambda}D}(M)}$ is isomorphic to a field L containing $\overline{K} = K/\operatorname{rad} K$. Then

$$M^B = K^{\lambda} B \otimes_{K^{\lambda} D} M$$

52

is an indecomposable $K^{\lambda}B$ -module, $\operatorname{End}_{K^{\lambda}B}(M^B)$ is a finitely generated Kalgebra and the quotient algebra $\operatorname{End}_{K^{\lambda}B}(M^B)$ is isomorphic to a field that is a finite purely inseparable field extension of L.

The proof is similar to those of Lemma 2.2 in [1].

Let $\lambda \in Z^2(G, S^*)$. Denote by H_p the kernel of the restriction of λ to $G_p \times G_p$. If $h \in H_p$ and $x \in G$, then $x^{-1}hx \in G_p$ and $|x^{-1}hx| = |h|$. From the equality $u_x^{-1}u_hu_x = \gamma u_{x^{-1}hx}$ ($\gamma \in S^*$) follows

$$u_x^{-1}u_h^{|h|}u_x = \gamma^{|h|} \cdot u_{x^{-1}hx}^{|h|},$$

hence

$$u_{x^{-1}hx}^{|h|} = \gamma^{-|h|} u_e.$$

We obtain $x^{-1}hx \in H_p$, therefore H_p is a normal subgroup of G. Since the restriction of λ to $H_p \times H_p$ is a coboundary, we may assume that $\lambda_{h_1,h_2} = 1$ for all $h_1, h_2 \in H_p$. Then $\gamma^{|h|} = 1$, hence $\gamma = 1$. Consequently, we may suppose that $\lambda_{a,g} = \lambda_{g,a} = 1$ for arbitrary $a \in H_p$ and $g \in G$.

3. On twisted group algebras of SUR-type

We recall that S is an integral domain of characteristic p, which is not a field, and R is the localization of S at a maximal ideal \mathfrak{m} . Denote by F a subfield of S. We assume that G is a finite group, and G_p is a normal subgroup of G. Given $\lambda \in Z^2(G, S^*)$, we denote by H_p the kernel of the restriction of λ to $G_p \times G_p$.

Theorem 1. Let G be a finite group and $\lambda \in Z^2(G, S^*)$. If $|H_p| > 2$ then $S^{\lambda}G$ is of SUR-type with an SUR-dimension-valued function $f_{\lambda}(n) = nt_n$, where $1 \leq t_n \leq |G: H_p|$.

Proof. By Lemma 3, $\sum_n (RH_p)$ is infinite for each n > 1.

Let $[V] \in \sum_n (RH_p)$ and $V^G = R^{\lambda}G \otimes_{RH_p} V$. Denote by $\{g_1 = e, g_2, \ldots, g_t\}$ a cross section of H_p in G. Then

$$V^G = \otimes_{i=1}^t V_i, \quad V_i = u_{g_i} \otimes V.$$

The RH_p -module V_i is called a conjugate of V. Denote $V^{(g_i)} = V_i$. Since $\operatorname{End}_{RH_p}(V_i) \cong \operatorname{End}_{RH_p}(V)$, the ring $\operatorname{End}_{RH_p}(V_i)$ is local for every $i \in \{1, \ldots, t\}$. Hence V_i is an indecomposable RH_p -module. By Krull-Schmidt Theorem [[11], Sect. 7.3], the RH_p -module V^G has a unique decomposition into a finite sum of indecomposable RH_p -modules, up to isomorphism and the order of summands.

Let $[L] \in \sum_{n} (RH_p)$. If V is isomorphic to an RH_p -module $L^{(g)}$, then L is isomorphic to the RH_p -module $V^{(g^{-1})}$. Hence there are infinitely many classes $[L_1], \ldots, [L_i], \ldots$ in $\sum_{n} (RH_p)$ such that every indecomposable RH_p -component of $(L_i^G)_{H_p}$ is isomorphic to none of the indecomposable RH_p -component of $(L_j^G)_{H_p}$ if $i \neq j$. Therefore there are infinitely many non-isomorphic indecomposable $R^{\lambda}G$ -modules M such that M is an $R^{\lambda}G$ -component of a module of the form V^G . The R-rank of any $R^{\lambda}G$ -component of V^G is divisible by n and does not exceed $n \cdot |G: H_p|$. Since

$$V \cong R \otimes_S W, \quad V^G \cong R \otimes_S W^G$$

for some SH_p -module W, there exists an integer t_n such that $1 \le t_n \le |G:H_p|$ and $\operatorname{Ind}_{nt_n}(S^{\lambda}G)$ is an infinite set. \Box

Theorem 2. Let G be a finite group and $\lambda \in Z^2(G, S^*)$ and assume that $|H_p: G'_p| > 2$. Then $f_{\lambda}(n) := ndt_n$, where $d = |G_p: H_p|$ and $1 \le t_n \le |G: G_p|$, is an SUR-dimension-valued function for $S^{\lambda}G$.

Proof. Let $A = G/G'_p$ and

$$U = \bigoplus_{g \in G'_p \setminus \{e\}} S(u_g - u_e).$$

The set $V := S^{\lambda}G \cdot U$ is a two-sided ideal of $S^{\lambda}G$. The quotient algebra $S^{\lambda}G/V$ is isomorphic to $S^{\mu}A$, where $\mu_{xG'_n, yG'_n} = \lambda_{x,y}$ for all $x, y \in G$.

It contains the group algebra SB_p , where $B_p = H_p/G'_p$. Since $|B_p| > 2$, by Lemma 3, $\sum_n (RB_p)$ is infinite for each positive integer *n*. The abelian group $A_p = G_p/G'_p$ is a Sylow *p*-subgroup of *A*.

Let $[M] \in \sum_{n} (RB_p)$. By Lemma 4, the $R^{\mu}A_p$ -module

$$M^{A_p} = R^{\mu} A_p \otimes_{RB_p} M$$

is indecomposable and $\operatorname{End}_{R^{\mu}A_{p}}(M^{A_{p}})$ is a local ring. The *R*-rank of $M^{A_{p}}$ equals $n \cdot |A_{p}: B_{p}| = n \cdot |G_{p}: H_{p}|$. Arguing similarly as in the proof of Theorem 1, we conclude that if [M] and [N] belong to $\sum_{n}(RB_{p})$ and $M \not\cong N$, then $M^{A_{p}} \not\cong N^{A_{p}}$. Let

$$(M^{A_p})^A := R^{\mu}A \otimes_{R^{\mu}A_p} M^{A_p}.$$

By the same arguments as in the proof of Theorem 1, we can prove that there exist infinitely many pairwise non-isomorphic indecomposable $R^{\mu}A$ -modules Ω such that Ω is an $R^{\mu}A$ -component of a module of the form $(M^{A_p})^A$. Note that the *R*-rank of Ω is divisible by $n \cdot |G_p: H_p|$ and does not exceed

$$n \cdot |G_p \colon H_p| \cdot |G \colon G_p| = nd \cdot |G \colon G_p|.$$

Hence for every n > 1 there is an integer t_n such that $1 \le t_n \le |G: G_p|$ and the set $\operatorname{Ind}_{ndt_n}(S^{\mu}A)$ is infinite.

If M is an $S^{\mu}A$ -module, then M is as well an $S^{\lambda}G$ -module. $S^{\mu}A$ -modules Mand N are isomorphic if and only if M and N are isomorphic as $S^{\lambda}G$ -modules. Consequently, the set $\operatorname{Ind}_{ndt_n}(S^{\lambda}G)$ is also infinite for any n > 1.

Theorem 3. Let $p \neq 2$, G be a finite group and $\lambda \in Z^2(G, F^*)$. If the algebra $F^{\lambda}G$ is not semisimple, then the algebra $S^{\lambda}G$ is of SUR-type. Moreover, if $d = \dim_F(F^{\lambda}G_p/\operatorname{rad} F^{\lambda}G_p)$ and $d < |G_p: G'_p|$, then a function $f_{\lambda}(n) = ndt_n$, where $1 \leq t_n \leq |G: G_p|$, is an SUR-dimension-valued function for $S^{\lambda}G$.

Proof. Applying Lemma 3 and arguing as in the proof of Theorem 2 in [3], we prove that, for every n > 1, there are infinitely many pairwise non-isomorphic indecomposable $R^{\lambda}G_{p}$ -modules V_{1}, V_{2}, \ldots satisfying the following conditions:

1) the *R*-rank of V_i is equal to nd;

2) $\operatorname{End}_{R^{\lambda}G_n}(V_i)$ is finitely generated as an *R*-module;

3) $\operatorname{End}_{R^{\lambda}G_{p}}(V_{i})$ is isomorphic to a field which is a finite purely inseparable field extension of $R/\operatorname{rad} R$;

4) $V_i \cong R \otimes_S W_i$, where W_i is an $S^{\lambda}G_p$ -module.

Let $V_i^G := R^{\lambda}G \otimes_{R^{\lambda}G_p} V_i$ and $(V_i^G)_{G_p}$ be the module V_i^G viewed as an $R^{\lambda}G_p$ module. The $R^{\lambda}G_p$ -module $(V_i^G)_{G_p}$ is a direct sum of conjugates of V_i . By the Krull-Schmidt Theorem [[11], Sect. 7.3], $(V_i^G)_{G_p}$ has a unique decomposition into a finite sum of indecomposable $R^{\lambda}G_p$ -modules, up to isomorphism and the order of summands. Hence the R-rank of each indecomposable component of $R^{\lambda}G$ -module V_i^G is divisible by nd. It follows that the S-rank of each indecomposable component of $S^{\lambda}G$ -module W_i^G is divisible by nd. Therefore, there exists an integer t_n such that $1 \leq t_n \leq |G: G_p|$ and $\operatorname{Ind}_{ndt_n}(S^{\lambda}G)$ is an infinite set.

Theorem 4. Let p = 2, G be a finite group, $\lambda \in Z^2(G, F^*)$ and moreover $d = \dim_F(F^{\lambda}G_2/\operatorname{rad} F^{\lambda}G_2)$.

DARIUSZ KLEIN

(i) If the algebra $F^{\lambda}G$ is not semisimple, then the set $\operatorname{Ind}_{l}(S^{\lambda}G)$ is infinite for some $l \leq |G|$.

(ii) If $d < \frac{1}{2}|G_2: G'_2|$, then $S^{\lambda}G$ is of SUR-type with an SUR-dimensionvalued function $f_{\lambda}(n) = ndt_n$, where $1 \le t_n \le |G: G_2|$.

Proof. Apply Lemma 3 and proceed as in the proof of Theorem 3 in [3]. \Box

References

- L. F. Barannyk, Modular projective representations of direct products of finite groups. Publ. Math. Debrecen, 63, 537–554, (2003).
- [2] L. F. Barannyk, Absolutely indecomposable representations of a twisted group algebra of a finite p-group over a field of characteristic p. Publ. Math. Debrecen, 78, 413–437, (2011).
- [3] L. F. Barannyk, D. Klein, Twisted group rings of strongly unbounded representation type. Colloq. Math., 100, 265-287, (2004).
- [4] P. M. Gudyvok, On modular representations of finite groups. Dokl. Uzhgorod. Univ. Ser. Fiz.-Mat., 4, 86-87, (1961) (in Russian).
- [5] P. M. Gudyvok and I.B. Chukhray, On the number of indecomposable matrix representations with given degree of a finite p-group over commutative local rings of characteristic p^s. Nauk. Visnyk Uzhgorod. Univ. Ser. Mat., 5, 33-40, (2000) (in Ukrainian).
- [6] P. M. Gudyvok and I.B. Chukhray, On indecomposable matrix representations of the given degree of a finite p-group over a commutative local rings of characteristic p^s. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Math., 8, 27-36, (2000).
- [7] P. M. Gudyvok, I. P. Sygetij and I. B. Chukhray, On the number of matrix representations with a given degree of a finite p-group over certain commutative rings of characteristic p^s. Nauk. Visnyk Uzhgorod. Univ. Ser. Mat., 4, 47-53, (1999) (in Ukrainian).
- [8] G. J. Janusz, Faithful representations of p-groups at characteristic p, I. J. of Algebra, 15, 335-351, (1970).
- [9] G. J. Janusz, Faithful representations of p-groups at characteristic p, II. Ibid. 22, 137-160, (1972).
- [10] G. Karpilovsky, Group Representations, Vol. 2. North-Holland Math. Stud. 177, North-Holland, 1993.
- [11] F. Kasch, Moduln und Ringe. Teubner, Stuttgart, 1977.

Dariusz Klein Pomeranian University of Słupsk Institute of Mathematics, Arciszewskiego 22d, 76-200 Słupsk, Poland *E-mail address:* klein@apsl.edu.pl

56