PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Wieloobrazowe dopasowanie zdjęć bliskiego zasięgu do automatycznej rekonstrukcji fotorealistycznych modeli 3D

Autorzy
Identyfikatory
Warianty tytułu
EN
Multi-image matching of close range photographs for photorealistic 3D models reconstruction
Języki publikacji
PL
Abstrakty
PL
Modelowanie obiektu, wykorzystujące obrazy cyfrowe, zostało zdefiniowane jako kompletny proces rozpoczynający się pozyskaniem obrazów, a kończący utworzeniem interaktywnego, wirtualnego modelu 3D. Teza, jaką przyjęto w niniejszej rozprawie, opiera się na założeniu, że przez dobór odpowiednich algorytmów przetwarzania obrazów cyfrowych, wykorzystywanych w środowisku fotogrametrycznym i widzeniu maszynowym (CV), umożliwia wieloobrazowe, automatyczne dopasowanie obrazów cyfrowych bliskiego zasięgu, w celu wykonania automatycznej rekonstrukcji foto realistycznych modeli 3D wybranych obiektów. Na podstawie przeglądu literatury krajowej i zagranicznej przeprowadzono analizę rozwiązań istniejących systemów pomiarowych, wykorzystywanych do modelowania 3D w fotogrametrii bliskiego zasięgu. W analizie uwzględniono takie czynniki, jak stopień automatyzacji pomiarów, liczbę, geometrię oraz jakość wykorzystywanych obrazów cyfrowych. Dokonano studium literaturowego dotyczącego charakterystyki przetwarzania obrazów, w szczególności obejmującego problematykę automatycznej detekcji narożników (punktów charakterystycznych) oraz modelowania 3D obiektów bliskiego zasięgu. Na podstawie przeprowadzonych analiz, wyodrębniono operatory, które mogą być wykorzystane dla automatycznego wykrywania punktów charakterystycznych obiektu, odwzorowanego na obrazach cyfrowych: Morayeca, Harrisa, Trajkoyica, SUSAN (ang. Smallest Univalue Segment Assimilaling Nucleus), SIFT (ang. Scale Invariant Feature Transform). Dokonano przeglądu algorytmów automatycznego dopasowywania obrazów, ze szczególnym uwzględnieniem metody ABM (ang. Area Base Matching), zintegrowanej z algorytmami stosowanymi w widzeniu maszynowym (ang. Computer Vision). Jako wynik szerokich analiz teoretycznych i eksperymentalnych, do automatycznego generowania przestrzennej chmury punktów zaproponowano ostatecznie następujący pakiet algorytmów: do wykrywania punktów charakterystycznych na obrazach cyfrowych - operator SUSAN; do do pasowywanla obrazów cyfrowych - metody ABM/lmage Dislance (opcjonalnie, w zależności od liczby wykrytych punktów na obrazie cyfrowym), ABM/CC, ABM/LSM; do obliczania tensora, na podstawie dopasowanych punktów charakterystycznych - algorytm RANSAC (ang. Random Simple Consensus). Przeprowadzone analizy i eksperymenty pozwoliły zdefiniować warunki dotyczące geometrii zdjęć, oświetlenia, jakości tekstury obiektu oraz rozdzielczości i formatu obrazu cyfrowego do opracowania autorskiego pakietu algorytmów do automatycznego generowania modeli 3D wybranych obiektów bliskiego zasięgu. Zaprojektowano modułową strukturę prototypu oprogramowania, 2 których każdy realizuje inny etap generowania modelu 3D. Udowodniono, ze dobierając algorytmy wielo obrazowego przetwarzania obrazów cyfrowych, stosowane w środowisku fotogrametrycznym i widzeniu maszynowym, można automatycznie generować powierzchnie wybranych modeli 3D bliskiego zasięgu.
EN
Modelling objects using digital images has been defined as a complete process which starts from image acquisition and is completed by creation of a virtual 3D model. The thesis which has been assumed for the present work is based on the assumption that by using specially selected algorithms applied in photogrammetry and in computer vision (CV), it is possible to perform multi-image, automatic, digital matching of close range images, in order to automatically reconstruct photorealistic 3D models of selected objects. Basing on reviews of Polish and foreign publications, an analysis of existing measuring systems has been performed, which are applied for 3D modelling in close range photogrammetry, The performed analyses considered such factors as: measurement automation level, the number, geometry and quality of applied digital images. The study of publications concerning image processing characteristics, with particular attention paid to automatic detection of corners (characteristic points), as well as 3D modelling of close range objects, has been performed. The analyses allow to select the following algorithms which might be applied for automatic detection of characteristic points of an object, visible on digital images: Moravec, Harris, Trajkovic, SUSAN (Smallest Univalue Segment Assimilating Nucleus), SIFT (Scale Invariant Feature Transform). Algorithms for automatic image matching, with particular consideration of the ABM (Area Base Matching) method, integrated with algorithms applied in computer vision, have also been reviewed. As a result of comprehensive theoretical and experimental analyses, the following package of algorithms has been finally proposed for automatic generation of a spatial point cloud: for detection of characteristic points on digital images - SUSAN algorithm; for digital image matching - successive utilization of the ABM/Image Distance method (as an option, depending on the number of points detected in me digital image), the ABM/CC, ABM/LSM method; for tensor calculations basing on matched characteristic points it is proposed to apply the RANSAC (Random Simple Consensus) algorithm. The performed analyses and experiments allow to define conditions related to image geometry, illumination, texture quality, as well as resolution and formats of digital images with respect to development of the author's package of algorithms for automatic generation of 3D models of selected close range objects. A modular structure of prototype software has been designed, in which every module performs successive stages of the 3D model generation. It was also proved that - after selection of appropriate algorithms of multi-image digital image processing, applied in photogrammetry and computer vision - it is possible to automatically generate surfaces of selected 3D close range models.
Rocznik
Tom
Strony
5--96
Opis fizyczny
Bibliogr. 111 poz., rys., tab., wykr.
Twórcy
autor
  • Wydział Geodezji i Kartografii, Zakład Fotogrametrii, Teledetekcji i Systemów Informacji Przestrzennej
Bibliografia
  • [1] Ackermann F. (1983) High precision digital image correlation. 39 Photogrammetrische Woche, Stuttgart.
  • [2] Amenta N., Bern M., Kamvysselis M. (1998) New Voronoi Based Surface Reconstruction Algorithm. ACM Proc. of Siggraph, pp. 415-422.
  • [3] D'Apuzzo N. (2003) Surface Measurement and Tracking of Human Body Parts from Multi Station Video Sequences. PhD Thesis No 15271, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland, 147 pages.
  • [4] Bujakiewicz A., Kowalczyk M., Zawieska D. (2003) Trójwymiarowe modelowanie obiektu architektonicznego. Archiwum Fotogrametrii, Kartografii i Teledetekcji, vol. 13b.
  • [5] Bujakiewicz A., Kowalczyk M., Podlasiak R, Zawieska D. (2004) Modeling and Visualisation of Three Dimensional Object Using Close Range Imagery. IAPRS, vol. 35, Part B5, Istambuł.
  • [6] Bujakiewicz A., Kowalczyk M., Podlasiak P, Zawieska D. (2006) 3D Reconstruction and Modeling of the Contact Surfaces for the Archaeological Small Museum Pieces. IAPRS and SIS, Drezno.
  • [7] Bagrowski G. (2011) Comparison of Image Matching Techniques for Stereo Photos. Master thesis. Politechnika Warszawska.
  • [8] Baltsavias E.P. (1991) Muliphoto geometrically constrained matching. Dissertation, ETH Zurich, Institut für Geodäsie und Photogrammmetrie, No 49.
  • [9] Baltsvatias E.P., Gruen A., Meister M. (1991) A Digital Orthophoto Workstation. ACSM/ASPRS/ /AUTO-CARTO10th Annual Meeting.
  • [10] Beraldin J.A., Blais F., Coumoyer L., Godin G., Rioux M. (2000) Active 3D sensing. Scuola Normale Superiore Pisa, Centro di Ricerche Informatiche per I Beni Culurali, Quaderni pp. 10, 21.
  • [11] Bemardini F., Mittleman J., Rushmeier H., Silva C., Taubin G. (1999) The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics 5, pp. 349-359.
  • [12] Blais F. (2003) A review of 20 years of range sensor development. Videometrics VII, SPIE Proc., vol. 5013, pp. 62-76.
  • [13] Boissonnat J.D. (1984) Geometric structures for three-dimensional shape representation, ACM Transactions on Graphics, vol. 3, No 4, pp. 266-286.
  • [14] Brazetti L., Scaioni M, (2009) Automatic orientation of image sequences for 3D object reconstruction: first results of a method integrating photogrammetric and computer vision algorithms. IAPRS, vol. 38, Part B5/W1.
  • [15] Brinkley J.F. (1985) Knowledge-driven ultrasonic three-dimensional organ modeling. IEEE Transaction on PAMI, vol. 7, No 4, pp. 431-441.
  • [16] Butowtt J., Kaczyński R. (2003) Fotogrametria. Wojskowa Akademia Techniczna, Warszawa.
  • [17] Campbell N.A., Wu X. (2008) Gradient Cross Correlation for Sub-Pixel Matching. http://www.isprc.org/proceedings/XXXVII/congress/7_pdf/6_WG-VII-6/03.pdf
  • [18] Chen F., Brown G.M., Song M. (2000) Overview of three-dimensional shape measurement using optical methods. Optic. Eng., vol. 39, pp. 10-22.
  • [19] Cignoni P., Callieri M., Corsini M., Dellepiane M., Ganovelli F., Ranzuglia G. (2008) MeshLab: an Open-Source Mesh Processing Tool. Sixth Eurographics ltalian Chapter Conference, pp. 129-136.
  • [20] Curless B., Levoy M. (1996) A volumetric method for building complex models from range images. ACM Proc. of Siggraph, pp. 303-312.
  • [21] Curless B. (1997) Technical Report CSL-TR-97-733. Ph. D. Dissertation Stanford University,
  • [22] Cyganek B. (2002) Komputerowe przetwarzanie obrazów trójwymiarowych. Akademicka Oficyna Wydawnicza EXIT, Warszawa.
  • [23] Daoshan Ou Yang, His-Yung Feng (2005) On the normal vector estimation for point cloud data from smooth surfaces. Computer-Aided Design, vol. 37, Issue 10, September 2005, pp. 1071-1079.
  • [24] Debevec P., Taylor C., Malik J. (1996) Modeling and rendering architecture from photographs: a hybrid geometry and image-based approach. ACM Proc. of Siggraph, pp. 11-20.
  • [25] Dey T.K., Geisen J. (2001) Detecting under sampling in surface reconstruction. Proc. 17 Symposium of Computational Geometry, pp. 257-263
  • [26] Dhond U.R., Aggarwal J.K. (1989) Structure from Stereo. IEEE Transaction on System, Man and Cybernetics, vol. 19, No 6, pp. 1489-1510.
  • [27] Edelsbrunner H., Mucke E. (1994) Three Dimensional Alpha Shapes. ACM Transactions on Graphics, vol. 13, No 1.
  • [28] El-Hakim S. (2000) A practical approach to creating precise and detailed 3D models from single and multiple views. IASPRS vol. 33, Part B5A, pp. 122-129.
  • [29] El-Hakim S. (2002) Semi-automated 3D reconstruction of occluded and unmarked surfaces from widely separated views. IAPRS, vol. 34, Part B5, pp. 143-148.
  • [30] Fischler M., Bolles R. (1981) Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM, vol. 24, No 6, pp. 381-395
  • [31] Fitzgibbon A.W., Zisserman A. (1998) Automatic camera recovery for closed and open image sequences. Proceedings of the 5th European Conference on Computer Vision, vol. 1, pp. 331-326.
  • [32] Förster W. (1982} On the geometric precision of digital correlation. Int. Arch. of Photogrammetry, vol. 25, Part 3, pp. 176-189.
  • [33] Förster W. (1986) A feature based correspondence algorithm for image matching. Int. Arch. of Photogrammetry, vol. 26, Part 3, Rovaniemi.
  • [34] Förster W., Ruwiedel S. (1992) Robust Computer Vision. Wichmann Verlag, Heidelberg.
  • [35] Gibson S., Cook J., Hubbold R. (2002) ICARUS: Interactive reconstruction from uncalibrated image sequence. ACM Proc. of Siggraph, Sketches& Applications.
  • [36] Golub G.H., Van Loan C.F. (1996) The Singular Value Decomposition and Unitary Matrices § 2.5.3 and 2.5.6 in Matrix Computations, 3ed. Baltimore, MD: Johns Hopkins University Press, pp. 70-71 and 73.
  • [37] Gotsman C., Keren D. (1998) Tight Fitting of Convex Polyhedral Shapes. Int. Journal of Shape Modeling, vol. 4, No 3&4, pp. 111-126.
  • [38] Gruen A. (1985) Adaptive least square correlation: a powerful image matching technique. South African Journal of PRS and Cartography, vol. 14, No 3, pp. 175-187.
  • [39] Gruen A., Baltsavias E. (1986) Adaptive least squares correlations with geometrical constraints. Proc. of SPIE, vol. 595, pp. 72-82.
  • [40] Gruen A., Baltsavias E.P. (1988) Automatic 3D measurement of human faces with CCD-cameras. SPIE Proceedings 'Biostereometrics'88.
  • [41] Gruen A., Li H. (1996) Linear feature extraction with LSB-Snakes from multiple images. IAPRS, vol. 31 (B3), pp. 266-272.
  • [42] Gruen A. (1996a) Least squares matching: a fundamental measurement algorithm. In Atkinson (ed) Close Range Photogrammetry and Machine Vision. Whittles Publishing, Caithnees, UK, pp. 217-255.
  • [43] Gruen A., Zhang L., Visnovcova J. (2001) Automatic reconstruction and visualization of a complex Buddha Tower of Bayon, Angkor, Cambodia. Proceedings 21 Wissenschaftlich-Technische Jahrestagung der DGPF, pp. 289-301.
  • [44] Gruen A., Remondino F., Zhang L. (2002) Reconstruction of the Great Buddha of Bamiyam, Afghanistan. IAPRS, vol. 34, Part 5, pp. 363-368.
  • [45] Gruen A., Zhang L. (2003) Automatic DTM Generation from TLS data. In: Gruen/Kahman (Eds), Optical 3_D Measurement Techniques VI, vol. 1, pp. 93-105.
  • [46] Hannah M.J. (2010) Digital Stereo Image Matching Techniques. http://www.isprs.org/proceedings/ /XXVII/congress/part3/280_XXVII-part3.pdf
  • [47] Hao X., Mayer H. (2003) Orientation and Auto-Calibration of Image Triplets and Sequences. IAPRS and SIS, vol. 34, Part 3/W8, pp. 73-78.
  • [48] Haralick R., Shapiro I.G. (1992) Computer and Robot Vision, vol. I+II, Addison-Wesley, Reading Ma, USA.
  • [49] Hartley R., Zisserman A. (2004) Multi Kew Geometry in Computer Vision. Cambridge University Press.
  • [50] Harris C., Stephens M. (1988) A Combined Corner and Edge Detector. Proc. Alvey Vision Conf., Univ. Manchester, pp. 147-151.
  • [51] Hastie T., Stuetzle W. (1989) Principal curves. JASA, vol. 84, pp. 502-516.
  • [52] Helava U.V. (1988) Object-space least-squares correlation. Photogrammetric Engineering and Remote Sensing, vol. 54, No 6, pp. 711-714.
  • [53] Heipke C. (1995)State-of-the-art of digital photogrammetric workstations for topographic applications. Photogrammetric and Remote Sensing, vol. 61, No 1, pp. 49-56.
  • [54] Hoppe H., De Rose T., Duchamp T., McDonald J., Stuetzle W. (1992) Surface reconstruction from unorganized points. ACM Proc. of Siggraph, pp. 71-78.
  • [55] Isselhard F., Brunnett G., Schreiber T. (1997) Polyhedral reconstruction of 3D objects by tetrahedral removal. Technical report No 288/97, Fachbereich Informatik, University of Kaiserslautem, Germany.
  • [56] Kazhdan M., Bolitho M., Hoppe H. (2006) Poisson Surface Reconstruction. Eurographics Syrnposium on Geometry Processing, Konrad Polthier, Alla Sheffer (ed).
  • [57] Klette R., Koschan A., Schlunz. (1996) Computer Vision - Räumliche Information aus digitalen Bildren. Verlag Vieweg Technik, Braunschweig/Wiesbaden.
  • [58] Jun Jie Liu, Jakaa A., Al-Obaidi A., Yong Hui Liu A. (2009) Comparative study of different corner detection methods in Computational Intelligence in Robotics and Automation (CIRA). IEEE International Symposium, pp. 509-514.
  • [59] Lowe D. (2004) Distinctive image features from scale-invariant key points. International Journal of Computer Vision, vol. 60, No 2, pp. 91-110.
  • [60] Luhmann T., Robson S., Kyle S., Harley I. (2006) Close Range Photogrammetry. Published by Whittles Publishing, UK.
  • [61] Marr D. (1982) Vision. W.H. Freeman, San Francisco.
  • [62] Maas H.G. (1996) Automatic DEM generation by multi-image feature based matching. IAPRS, vol. 31, Part B3, pp. 484-489.
  • [63] Matas J., Chum O., Urban M., Pajdla T. (2002) Robust wide baseline stereo from maximally stable extremal regions. Proceedings of BMVC, pp. 384-393.
  • [64] Mayer H. (2003) Robust orientation, calibration, and disparity estimation of image triples. 25 DAGM Pattern Recognition Symposium (DAGM03), No 2781, series LNCS, Michaelis, Krell (Ed), Magdeburg, Germany.
  • [65] Mencl R. (2001) Reconstruction of Surfaces from Unorganized 3D Points Clouds. PhD Thesis, Dortmund University, Germany.
  • [66] Merriam M. (1992) Experience with the cyber ware 3D digitizer. Proceedings NCGA, pp. 125-133.
  • [67] Moore D., Warren J. (1990) Approximation of dense scattered data using algebraic surfaces. TR 90-135, Rice University, USA.
  • [68] Moravec H.P. (1977) Towards Automatic Visual Obstacle Avoidance. Proc. 5 International Joint Conference on Artificial Intelligence, pp. 584.
  • [69] Moravec H.P. (1979) Visual Mapping by a Robot Rover. Internalional Joint Conference on Artificial Intelligence, pp. 598-600.
  • [70] Muraki S. (1991) Volumetric Shape description of range data using "blobby model". ACM Proc. of Siggraph, pp. 217-226.
  • [71] Nister D. (2001) Automatic dense reconstruction form uncalibrated video sequences. PHD Thesis, Computational Vision and Active Perception Lab. NADA-KHT, Stockholm, 226 pages.
  • [72] Parks D., Gravel J.P. (2010) Corner Detectors: The Harris/Plessey Operator, www.cim.mcgill.ca/~dparks/CornerDetector/index.htm
  • [73] Pollefeys M., Koch R., Van Gool L. (1999) Self-Calibration and Metric Reconstruction in spite of Varying and Unknown Internal Camera Parameters. IJCY, vol. 32, No 1, pp. 7-25.
  • [74] Pollefeys M. (2000) Tutorial on 3D modeling from images. Tutorial at ECCV 2000.
  • [75] Pollefeys M., Van Gool L., Vergauwen M., Verbiest F., Cornelis K., Tops J., Koch R. (2004) Visual modeling with a hand-held camera. IJCY, vol. 59, No 3, pp. 207-232.
  • [76] Pritchett P., Ziesserman A. (1998) Matching and reconstruction from widely separated views. 3D Structure from Multiple Images of Large-Scale Environments, LNCS 1506.
  • [77] Remondino F. (2003) From point cloud to surface: The modeling and visualization problem. IAPRS and SIS, vol. 34, Part B5/W10.
  • [78] Remondino F. (2004) Reconstruction of Static Human Body Shape from Image Sequence. Computer Vision and Image Understanding, vol. 93, No 1, pp. 65-85.
  • [79] Remondino F., Zhang L. (2005) Surface reconstruction algorithms for detailed close range object modeling. IASPRS, vol. 36, Part B5/W17.
  • [80] Remondino F.V, Ressl C. (2006) Overview and experience in automated marker less image orientation. IAPRS and SIS, vol. 36, Part 3, pp. 248-254.
  • [81] Remondino F., El-Hakim (2006) Image-Based 3D Modeling: A Review. The Photogrammetric Record, vol. 21, No 115, pp. 269-291.
  • [82] Roncella R., Forlani G., Remondino F. (2005) Photogrammetry for geological applications: automatic retrieval of discontinuity in rock slopes. Videometrics VIII - Beraldin, El-hakim, Gruen, Walton (ed), SPIE & T Electronic Imaging, vol. 5665, pp. 17-27.
  • [83] Rubinstein R., Zibulevsky M., Elad M. (2008) Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit. In: Technical Report CS-2008-08.
  • [84] Rushmeier H., Bernardini F. (2002) The 3D model acquisition pipeline. Comput. Graph. Forum 21, No 2, pp. 149-172.
  • [85] Sawicki P. (2002) Fotogrametryczne systemy do pomiaru punktów w bliskim zasięgu. Archiwum Fotogrametrii Kartografii i Teledetekcji, vol. 12b, s. 345-35.
  • [86] Scharstein D., Szeliski R. (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. UCV, vol. 47 No 1/2/3, pp. 7-42.
  • [87] Schenk T. (1999) Digital Photogrammetry. Edited Terra Science, ISBN 0-9677653-0-7.
  • [88] Schmid C., Zisserman A. (2000) The Geometry and Matching of Lines and Curves over Multiple views. Journal of Computer Vision, vol. 40, No 3, pp. 199-233.
  • [89] Schmid C., Mohr R. (1997) Local gray value imariants for image retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, No 5, pp. 530-534.
  • [90] Smith S.M., Brady M. (1997) SUSAN - A New Approach to Low Level Image Processing. International Journal of Computer Vision, vol. 23, No 1, pp. 45-78.
  • [91] Staiger R. (2003) Terrestrial Laser Scanning - Technology, Systems and Applications. TS12 Positioning and Measurement Technologies and Practices. 2nd FIG Regional Conference Marrakech, Morocco, December 2-5.
  • [92] Strecha C., Tuytelaars T., Van Gool L. (2003) Dense matching of multiple wide-baseline views. Proceedings of 9 IEEE International Conference on Computer Vision, Nice, France, October 2003, vol. 2, pp. 1194-1201.
  • [93] Streilein A., Beyer H. (1991) Development of a digital system for architectural photogrammetry. Proceedings of XIV International Symposium of CIPA.
  • [94] Terzopoulos D. (1998) The Computation of Visible Surface Representation. IEEE Transactions on PAMI, vol. 10, No 4.
  • [95] Trajkovic M., Hedley M. (1998) Fast Corner Detection. Image and Vision Computing, vol. 16, No 2, pp. 75-87.
  • [96] Van den Heuvel F. (2003) Automation in architectural photogrammelry. PhD Thesis, Publication on Geodesy 54, Netherlands Geodetic Commission.
  • [97] Vosselman G. (1992) Relational matching. Lecture Notes in Computer Science, No 628, Springer, Berlin.
  • [98] Xiao J., Shah M. (2003) Two-frame wide baseline matching. IEEE Proceedings 9th ICCV, vol. 1, pp. 603-610.
  • [99] Werner T., Ziesserman A. (2002) New technique for automated architectural reconstruction form Photographs. Proceedings 7th ECCV, vol. 2, pp. 541-555.
  • [100] Wilczkowiak M., Trombettoni G., Jermann C., Strum P., Boyer F. (2003) Scene modeling based on constraint system decomposition techniques. IEEE Proceedings 9th ICCV, pp. 1004-1010.
  • [101] Wróbel B. (1987) Facet Stereo Vision (FAST Vision) - A new approach to computer stereo vision and to digital photogrammetry. IASPRS, Inter commission Conference on 'Fast Processing of Photogrammetric Data', Interlaken, Switzerland, pp. 231-258.
  • [102] Zawieska D. (2000) Topography of surface and spinal deformity. IAPRS, vol. 33, Part B5/2, pp. 937-942.
  • [103] Zawieska D. (2003) Badanie przydatności techniki mocy projekcyjnej w fotogrametrycznych pomiarach deformacji kręgosłupa. Rozprawa doktorska, Politechnika Warszawska, 204 s.
  • [104] Zawieska D. (2008) Rekonstrukcja 3D obiektów bliskiego zasięgu na podstawie zdjąć archiwalnych. Archiwum Fotogrametrii Kartografii i Teledetekcji, vol. 18, s. 185-194.
  • [105] Zawieska D. (2010) Wybrane operatory w automatyzacji dopasowywania obrazów cyfrowych bliskiego zasiągu. Archiwum Fotogrametrii Kartografii i Teledetekcji, vol. 21, s. 481-491.
  • [106] Zawieska D. (2011) Analysis of operators for detection of corners set in automatic image matching. Archiwum Fotogrametrii Kartografii i Teledetekcji, vol. 22, pp. 423-436.
  • [107] Zawieska D. (2012) Automatyczna orientacja obrazów cyfrowych na przysiadzie wybranej geometrii sieci zdjęć. Archiwum Fotogrametrii Kartografii i Teledetekcji, vol. 23, s. 509-519.
  • [108] Zhang L., Gruen A. (2004) Automatic DSM Generation from Linear Array Imagery Data. IAPRS, vol.35, Part B3, pp. 128-133.
  • [109] Zhang L. (2005) Automatic Digital Surface Model (DSM) generation from linear array images. PhD Thesis Nr 16078, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland, 199 pages.
  • [110] Zheng Z., Wang H. (1999) Analysis of Gray Level Corner Detection. Pattern Recognition Letters vol. 20, pp. 149-162.
  • [111] Ziou D., Tabbone S. (1998). Edge Detection Techniques - An Overview. Journal of Pattern Recognition and Image Analysis, vol. 8, pp. 537-559.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fd52c32-6ec9-4634-86d7-447b3aaf3f23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.