PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In situ thermal decomposition route: Preparation and characterization of nano nickel, cobalt, and copper oxides using an aromatic amine complexes as a low-cost simple precursor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main interest now is the development of metallic or inorganic-organic compounds to prepare nanoparticle materials. The use of new compounds could be beneficial and open a new method for preparing nanomaterials to control the size, shape, and size of the nanocrystals. In this article, the thermal decomposition of [M2(o-tol)2(H2O)8]Cl4 (where o-tol is ortho-tolidine compound, M = Ni2+, Co2+, Cu2+) new precursor complex was discussed in solid-state conditions. The thermal decomposition route showed that the synthesized three complexes were easily decomposed into NiO, Co3O4 and CuO nanoparticles. This decomposition was performed at low temperatures (~600°C) in atmospheric air without using any expensive and toxic solvent or complicated equipment. The obtained product was identified by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). FT-IR, XRD and EDX analyses revealed that the NiO nanoparticles exhibit a face-centered-cubic lattice structure with a crystallite size of 9–12 nm. The formation of a highly pure spinel-type Co3O4 phase with cubic structure showed that the Co3O4 nanoparticles have a sphere-like morphology with an average size of 8–10 nm. The XRD patterns of the CuO confirmed that the monoclinic phase with the average diameter of the spherical nanoparticles was approximately 9–15 nm.
Słowa kluczowe
EN
Rocznik
Strony
47--53
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wz.
Twórcy
  • Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
  • Department of Chemistry, College of Science, Zagazig University, Zagazig, Egypt
  • Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
  • Faculty of Education, Shaqra University, Al Muzahimiyah, Shaqra, Riyadh Province, P.O. Box 205, Zip Code 11972, Kingdom Saudi Arabia
  • Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, KSA
Bibliografia
  • 1. Noller, C.R. (1960). Textbook of Organic Chemistry, Springer Verlag.
  • 2. Hunger, K. & Herbst, W. (2012). “Pigments, Organic” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, DOI: 10.1002/14356007.a20_371.
  • 3. Ahangaran, F. & Navarchian, A.H. (2020). Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review. Adv. Colloid. Interface Sci. 286. 102298. DOI: 10.1016/j.cis.2020.102298.
  • 4. Rahal, H.T., Awad, R., Abdel Gaber, A.M. & Bakeer, D. (2017). Synthesis, characterization, and magnetic properties of pure and EDTA-capped NiO nanosized particles. J. Nanomaterials, 2017, 9. DOI: 10.1155/2017/7460323.
  • 5. Al Boukhari, J., Zeidan, L., Khalaf, A. & Awad, R. (2019). Synthesis, characterization, optical and magnetic properties of pure and Mn, Fe and Zn doped NiO nanoparticles. J. Chem. Phys., 516, 116–124. DOI:10.1016/j.chemphys.2018.07.046.
  • 6. Meng, F., Shi, W., Sun, Y., Zhu, X., Wu, G., Ruan, C., Liu, X. & Ge, D. (2013). Nonenzymatic biosensor based on CuxO nanoparticles deposited on polypyrrole nanowires for improving detectionrange. J. Biosens. Bioelectr., 42, 141–147. DOI: 10.1016/j.bios.2012.10.051.
  • 7. Gao, Q., Zeng, W. & Miao, R. (2016). Synthesis of multifarious hierarchical flower-like NiO and their gas-sensing properties. J. Mat. Sci. Mat. Electron., 27(9), 9410–9416. DOI: 10.1007/s10854-016-4986-3.
  • 8. Koh, I. & Josephson, L. (2009). Magnetic nanoparticle sensors. J. Sensors, 9(10), 8130–8145. DOI:10.3390/s91008130.
  • 9. Nur, S., Yazid, A.M., Md Isa, I., Abu Bakar, S., Hashim, N. & Ab Ghani, S. (2014). A review of glucose biosensors based on graphene/metal oxide nanomaterials. Analyt. Lett., 47(11), 1821–1834. DOI: 10.1080/00032719.2014.888731.
  • 10. Wu, R., Wu, J., Yu, M., Tsai, T. & Yeh, C. (2008). Applications of Semiconducting Metal Oxides Gas Sensors. Sens. Actu. B: Chem., 131, 306–312. DOI: 10.1016/j.snb.2007.11.033.
  • 11. Mate, V.R., Shirai, M., & Rode, C.V. (2013). Heterogeneous Co3O4 catalyst for selective oxidation of aqueous veratryl alcohol using molecular oxygen. Catal. Commun., 33, 66–69. DOI: 10.1016/j.catcom.2012.12.015
  • 12. Maruyama, T., & Arai, S. (1996). Electrochromic properties of cobalt oxide thin fi lms prepared by chemical vapor deposition. J. Electrochem. Soc., 143, 1383–1386. DOI: 10.1149/1.1836646.
  • 13. Li, Y.G., Tan, B. & Wu, Y.Y. (2008). Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Lett., 8, 265–270. DOI: 10.1021/nl0725906.
  • 14. Wang, R.M., Liu, C.M., Zhang, H.Z., Chen, C.P., Guo, L., Xu, H.B. & Yang, S.H. (2004). Porous nanotubes of Co3O4: Synthesis, characterization, and magnetic properties. Appl. Phys. Lett., 85, 2080–2082. DOI: 10.1063/1.1789577.
  • 15. Lou, X., Han, J., Chu, W., Wang, X. & Cheng, Q. (2007). Synthesis and photocatalytic property of Co3O4 nanorods. Mater. Sci. Eng., B: 137, 268–271. DOI: 10.1016/j.mseb.2006.12.002.
  • 16. Warang, T., Patel, N., Santini, A., Bazzanella, N., Kale, A. & Miotello, A. (2012). Pulsed laser deposition of Co3O4 nanoparticles assembled coating: Role of substrate temperature to tailor disordered to crystalline phase and related photocatalytic activity in degradation of methylene blue. Appl. Catal. A: Gen. 423–424, 21–27. DOI: 10.1016/j.apcata.2012.02.037.
  • 17. Sun, H., Ahmad, M. & Zhu, J. (2013). Morphology-controlled synthesis of Co3O4 porous nanostructures for the application as lithiumion battery electrode. Electrochim. Acta, 89, 199–205. DOI: 10.1016/j.electacta.2012.10.116.
  • 18. Lester, E., Aksomaityte, G., Li, J. & Gomez, S. (2012). Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles. Prog. Cryst. Growth Charact. Mater. 58, 3–13. DOI: 10.1016/j.pcrysgrow.2011.10.008.
  • 19. Gardey-Merin, M.C., Palermo, O.M., Belda, R., Fernández de Rapp, M.E., E.Lascalea, G. & Vázquez, P.G. (2012). Combustion synthesis of Co3O4 nanoparticles: fuel ratio effect on the physical properties of the resulting powders. Proced. Mater. Sci., 1, 588–593. DOI: 10.1016/j.mspro.2012.06.079.
  • 20. Bhatt, A.S., Bhat, D.K., Tai, C.W. & Santosh, M.S. (2011). Microwave-assisted synthesis and magnetic studies of cobalt oxide nanoparticles. Mater. Chem. Phys., 125, 347–350. DOI: 10.1016/j.matchemphys.2010.11.003.
  • 21. Baydi, M.E., Poillerat, G., Rehspringer, J.L., Gautier, J.L., Koenig, J.F. & Chartier, P. (1994). A sol-gel route forthe preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium. J. Solid State Chem., 109, 281–288. DOI: 10.1006/jssc.1994.1105.
  • 22. Kim, D.Y., Ju, S.H., Koo, H.Y., Hong, S.K. & Kangf, Y.C. (2006). Synthesis of nanosized Co3O4 particles by spray pyrolysis. J. Alloys Compd., 417, 254–258. DOI: 10.1016/j.jallcom.2005.09.013.
  • 23. Kumar, R.V., Diamant, Y. & Gedanken, A. (2000). Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater., 12, 2301–2305. DOI: 10.1021/cm000166z.
  • 24. Sinko, K., Szabo, G. & Zrinyi, M. (2011). Liquid-phase synthesis of cobalt oxide nanoparticles. J. Nanosci. Nanotechnol., 11, 1–9. DOI: 10.1166/jnn.2011.3875.
  • 25. Zou, D., Xu, C., Luo, H., Wang, L. & Ying, T. (2008). Synthesis of Co3O4 nanoparticles via an ionic liquid-assisted methodology at room temperature. Mater. Lett., 62, 1976–1978. DOI: 10.1016/j.matlet.2007.10.056.
  • 26. Jiang, J. & Li, L. (2007). Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater. Lett., 6, 4894–4896. DOI: 10.1016/j.matlet.2007.03.067.
  • 27. Fan, S., Liu, X., Li, Y., Yan, E., Wang, C., Liu, J. & Zhang, Y. (2013). Non-aqueous synthesis of crystalline Co3O4 nanoparticles for lithiumion batteries. Mater. Lett., 91, 291–293. DOI: 10.1016/j.matlet.2012.10.008.
  • 28. Masoomi, M.Y. & Morsali, A. (2012). Applications of metal–organic coordination polymers as precursors for preparation of nano-materials. Coord. Chem. Rev., 256, 2921–2943. DOI: 10.1016/j.ccr.2012.05.032.
  • 29. El-Trass, A., Elshamy, H., El-Mehasseb, I. & El-Kemary, M. (2012). CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl. Sur. Sci., 258(7), 2997–3001. DOI: 10.1016/j.apsusc.2011.11.025.
  • 30. Refat, M.S. (2007). Complexes of uranyl(II), vanadyl(II) and zirconyl(II) with orotic acid “vitamin B13”: Synthesis, spectroscopic, thermal studies and antibacterial activity. J. Mol. Struct., 842(1–3), 24–37. DOI: 10.1016/j.molstruc.2006.12.006.
  • 31. Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York.
  • 32. Lever, A.B.P. & Mantovani, E. (1971). Far-infrared and electronic spectra of some bis(ethylenediamine) and related complexes of copper(II) and the relevance of these data to tetragonal distortion and bond strengths. Inorg. Chem., 10, 817–826. DOI: 10.1021/ic50098a031.
  • 33. Lever, A.B.P. (1968). Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, (1968).
  • 34. Waseda, Y., Matsubara, E. & Shinoda, K. (2011). X-Ray Diffraction Crystallography. Verlag, Berlin Heidelberg: Springer. DOI: 10.1007/978-3-642-16635-8.
  • 35. Kolhatkar, A., Jamison, A., Litvinov, D., Willson, R. & Lee, T. (2013). Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci., 14(8), 15977–16009. DOI:10.3390/ijms140815977.
  • 36. Rifaya, M.N., Theivasanthi, T. & Alagar, M. (2012). Chemical capping synthesis of nickel oxide nanoparticles and their characterizations studies. Nanosc. Nanotechnol., 2(2), 134–138. DOI: 10.5923/j.nn.20120205.01.
  • 37. Farhadi, S., Javanmard, M. & Nadri, G. (2016). Characterization of cobalt oxide nanoparticles prepared by the thermal decomposition. Acta Chim. Slov., 63, 335–343. DOI: 10.17344/acsi.2016.2305.
  • 38. Tamaekong, N., Liewhiran, C. & Phanichphant, S.n(2014). Synthesis of thermally spherical CuO nanoparticles. J. Nanomaterials, 2014, Article ID 507978, 5 pages. DOI: 10.1155/2014/507978.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fd5013e-437d-40e5-ba68-598d7cf6428d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.